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Two conceptions of natural number

Alexander George and Daniel J. Velleman

The distinction between the completed and the potential infinite is well known.
Less noted is a corresponding contrast between two different conceptions of nat-
ural number. It is only to be expected that there would be such a contrast,
since the natural numbers form our most basic model of an infinite collection.
In this note, we present these two distinct conceptions by articulating the philo-
sophical visions that inspire them and the mathematical definitions that give
them substance. We show how these analyses satisfy, in interestingly different
ways, the basic demands that any such definition must meet. In keeping with the
fundamental difference in perspective between these accounts of natural number,
we should expect that those who advance the one definition will find the other
wanting. We try to describe what form these respective criticisms will take and
to say why they will appear misguided to proponents of the conception against
which they are directed.

An intuitive way to try to characterize the natural numbers is to use the
mathematical idea of the closure of a set under an operation. If A is a set and
f is an operation, then A is said to be closed under f if, for every object a in
A, the result of applying the operation f to a, denoted f(a), is also in A. The
closure of A under f is the smallest set containing A that is closed under f. For
example, in this terminology the set N of natural numbers would be the closure
of the set {0} under the successor operation S.!

There are two ways that mathematicians commonly form the closure of a set
A under an operation f. The first is to begin with the set A, and add additional
elements to form the closure. For example, if a is in A, then f(a) must be added
to A if we are to obtain a set that is closed under f. But then f(f(a)) must
also be added, and then f(f(f(a))). In fact, anything that can be obtained by
applying the operation f repeatedly to elements of A must be in the closure of
A under f. Let A, be the set of all elements of A, together with those objects
obtainable by applying f repeatedly to elements of A. Then A, is closed under
f, and therefore it is the closure of A under f.

Another way to form the closure of A under f is to let A* be the intersection
of all sets that contain A and are closed under f. In other words, the elements
of A* are those objects that have the property of belonging to every set that
contains A and is closed under f. It is not hard to see that A* contains A and is
closed under f, and as the intersection of all sets with this property it must be
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the smallest such set. Thus A* is also the closure of A under f, and therefore
A* = A,. (See, for example, (Enderton 1972, pp. 22-5).)

These two ways of forming the closure of a set under an operation suggest
two ways of trying to characterize the natural numbers. If we let A = {0} and f
be the successor operation, then they correspond to the definitions we have given
of A, and A*. The first characterization says that the natural numbers are just
those objects obtainable from 0 by repeatedly applying the successor operation.
We might regard this characterization as giving two rules for generating natural
numbers:

(1) 0 is a natural number, and
(2) If n is a natural number, then so is S(n).

The natural numbers, according to this characterization, are those, and only
those, objects that are generated by these rules, so it is natural to call it the
build up (BU) definition of “N”. The restriction that only objects generated by
rules (1) and (2) are numbers is often referred to as the extremal clause of the
definition.

The second characterization says that the natural numbers are precisely those
objects that belong to every set that contains 0 and is closed under the successor
operation. This characterization starts with sets that contain 0 and are closed
under successor, most of which are larger than the set of natural numbers, and
then eliminates the non-numbers from these sets by intersecting them. It is
therefore appropriate to call it the pare down (PD) approach to defining the
natural numbers.

The pare down definition of the natural numbers was first advanced indepen-
dently by Richard Dedekind and Gottlob Frege in the nineteenth century. Note
that the validity of mathematical induction is easily seen to follow from the PD
definition. For if a predicate holds of 0, and it holds of S(n) whenever it holds of
n, then its extension is a set containing 0 and closed under S. Since any natural
number, according to the PD definition, must belong to every set containing 0
and closed under S, it follows that the predicate in question must apply to every
natural number.

It is also apparent that the PD definition captures all and only the natural
numbers. “All” because each natural number belongs to every set that contains
0 and is closed under the successor operation; and “only” because anything that
belongs to every such set will also belong to N, since N is itself such a set. But
note that this reasoning will apply only if we reckon the set of natural numbers
to be in the range of the second-order quantifier in the PD definition. This
impredicativity may lead to concern. If one views the definition as offering a
recipe for constructing the set of natural numbers, impredicativity is fatal: for
it would then have us creating the collection of natural numbers through appeal
to that very collection.

But this is clearly not the purpose of the definition according to those who
offer it. Its object is not to create the collection of natural numbers, which,
on the contrary, is viewed as already existing, but rather to identify which of
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the existing completed collections of objects N is. Viewed as picking out the
already existing collection N, it is, as W.V. Quine has remarked, “not visibly
more vicious than singling out an individual as the most typical Yale man on
the basis of averages of Yale scores including his own” (1969, p. 243).

It should be clear that the PD definition of “N” is most natural from a
platonist perspective. For the PD approach is at home with a conception of the
natural numbers as a completed infinite collection that exists, independently of
our activity, amidst other likewise completed infinite sets. On this view, the task
of an adequate definition is to pick out the set N from this universe of entities.2

But now consider the matter from a constructivist standpoint. There is no
circumscribed domain of sets “out there” in advance of our activity. The domain
of sets is indefinitely extensible; that is, given any particular delimitation of the
universe of sets, we can construct in terms of it another set not previously in
the universe. In particular, the set of natural numbers will not exist until we
construct it. Now the impredicativity of the PD definition is a serious problem.
For given this definition, how can one show that, to cite a famous example,
Julius Caesar is not a natural number? Only if there exists a set containing 0
and closed under successor that does not contain Caesar. The argument that N
itself is such a set will not satisfy the constructivist, since N cannot be assumed
to exist before it is constructed.

The impredicativity of the PD definition means that it cannot be viewed as
a procedure for the construction of N. The build up definition, however, can
be. The BU approach coheres best with a constructivist stance, according to
which a definition of “N” should provide us with an account of how to generate
all and only the natural numbers. For the constructivist, the only exclusionary
clause that is required is one to the effect that only those objects generated by
the two specified rules of construction are natural numbers. Once we know this,
we can see, for example, that Julius Caesar is not a natural number, for he is
not identical to the output of either rule.

But just as the PD approach appears problematic from the constructivist
perspective, so does the BU approach appear wanting to the platonist. Yes,
the platonist will grant, the BU definition excludes the use of other than the
intended rules in generating the members of N, but it does not explicitly exclude
unintended uses of those rules. In particular, there is nothing in the BU definition
that bars non-finite iteration of the second generating rule. And such iteration
must be ruled out, the objection continues, for otherwise there is no guarantee
that the definition will capture only the natural numbers, and nothing else.? The
complaint is not that those who offer the BU definition fail to realize that only
finite iteration is permitted, but rather that this realization is no thanks to the
definition.

For this reason, the BU definition will appear at best elliptical from the
platonist perspective: it must be understood that the second rule of the definition
permits only finite iteration of the successor operation to yield natural numbers.
Of course, if “finite iteration” means “iteration n times, for some natural number
n,” then the definition is circular, as Dedekind himself objected:
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If one presupposes knowledge of the sequence N of natural numbers
and, accordingly, allows himself the use of the language of arithmetic,
then, of course, he has an easy time of it. He need only say: an
element n belongs to the sequence N if and only if, starting with
the element 1 and counting on and on steadfastly, that is, going
through a finite number of iterations of the mapping ¢ [...], I actually
reach the element n at some time; by this procedure, however, I shall
never reach an element ¢ outside of the sequence N. But this way
of characterizing the distinction between those elements t that are
to be ejected [...] and those elements n that alone are to remain is
surely quite useless for our purpose; it would, after all, contain the
most pernicious and obvious kind of vicious circle. The mere words
“finally get there at some time,” of course, will not do either; they
would be of no more use than, say, the words “karam sipo tatura,”
which I invent at this instant without giving them any clearly defined
meaning. (Dedekind 1967, pp. 100-1)3

Consequently, the platonist might offer the following as a friendly amend-
ment to the BU proposal: delete the extremal clause, which perforce will be
either inexplicit or circular, and secure its intent by specifying that induction
is valid. For the platonist, the requirement that induction is a valid means of
forming generalizations about the elements of some collection guarantees that
non-numbers will be excluded from the collection. For the predicate “natural
number” applies to 0, and applies to S{n) if it applies to n, and therefore it must
apply to every element of a collection for which induction is valid. Of course,
this entailment presupposes that “natural number” (or a predicate of a piece
with it) is taken to be well-defined: the validity of induction does not articulate
the intentions of the extremal clause unless induction is understood impredica-
tively, as a generalization over a pre-existing domain of predicates that includes
the very predicate being defined. As we have observed, this impredicativity is
unacceptable from the constructivist point of view, and therefore the construc-
tivist will not consider induction to be an adequate replacement for the extremal
clause.®7

In fact, the constructivist will find the friendly amendment not only unhelp-
ful, but unnecessary as well. For just as the constructivist’s objection to the
PD approach appears off the mark to the platonist, so too will the objection
about BU’s inexplicitness seem to the constructivist. From the constructivist
viewpoint, no intelligible but unwanted possibility has yet been described that
would require changes to, or replacement of, the extremal clause: since the
constructivist accepts the potential infinite, but not the completed infinite, the
idea of applying the generation rules an infinite number of times is unintelligi-
ble from the constructivist perspective, and so nothing need be said to rule out
those alleged entities that would be constructed as a result of such an impossible
application.? 9 10

If BU is not to postulate induction, how then is its validity to be secured?
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The argument traditionally offered by constructivists is just this. Consider a
predicate P for which the premises of induction hold and let n be any given
natural number. The second premise of induction tells us that if P holds of 0
then P holds of S(0). Taken together with the first, which states that P does hold
of 0, we can conclude that P holds of S(0), by modus ponens. Since we know,
again by the second premise, that if P holds of S{0) then it holds also of S(S(0)),
we can likewise infer that P holds of S(S(0)). And so on. Thus, we see that
at every stage of a construction that begins with 0 and proceeds by repeatedly
applying the successor operation, P must hold of the object constructed. But on
the BU view, n was obtained by precisely such a construction (this is what the
extremal clause asserts), so we may conclude that P holds of n. Thus, induction
is valid with respect to any well-defined predicate.!!

Earlier, we noted that the impredicativity of the PD definition of natural
number renders it unacceptable to the constructivist, who will turn instead to
the BU account for an adequate analysis. This turn will clearly be rewarding for
those who believe that in assessing a definition’s impredicativity, it suffices to
confine one’s examination to that definition. For, as we have seen, the source of
the impredicativity is the second-order quantifier in the principle of mathematical
induction, and induction is not actually a part of the BU definition, but is rather
a consequence of it.

But someone might think that the assessment of a definition’s impredicativity
cannot proceed through scrutiny of it alone, but also requires examination of con-
ceptual truths about the defined notion, in this case the validity of induction.?
Or someone might be convinced that a definition of “N” cannot merely specify
the extension of “natural number” but must also specify the grounds for gener-
alizations about natural numbers; even if induction is not used for the first task
(say, by appealing to the BU definition), it is needed for the second, and hence
reference to it will have to be made in any adequate analysis of the meaning of
“natural number.” !> While we do not here endorse these, or similar, proposals,
they do make it worthwhile to inquire whether impredicativity lurks in the BU
account of induction and, if it does, whether it is of the same nature as that
encountered in the PD conception.

In fact, there is something in that account about which one might worry.
According to the constructivist, the domain of predicates to which induction
applies is indefinitely extensible. Indeed, the very act of defining “N” extends
this domain, by creating the new predicate “natural number,” along with other
predicates defined in terms of it. Induction ought to apply to these new predi-
cates. We have argued that the BU definition implies the validity of induction,
but might it imply it only for predicates previously defined? If so, then the BU
definition would in a sense undermine itself: it would justify induction for all
previously defined predicates, and it would simultaneously create new predicates,
thus rendering obsolete the very version of induction that it implies.

This same self-sabotage is avoided in the PD definition at precisely the cost
of impredicativity. For this definition picks out a set N, which then gives us the
new predicate “natural number” and other predicates defined in terms of it, and
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these new predicates have the potential to undermine the work done previously
by the PD definition, since their extensions should have been included among
the collections that were intersected to produce N in the first place. Of course,
from the platonist perspective, they were indeed included, since they existed all
along, and so all is well. But a constructivist cannot likewise argue that the
BU justification of induction goes through because all well-defined predicates
already exist quite independently of mathematical activity, for this is precisely
what a constructivist denies. How, then, to respond to this concern about BU’s
justification of induction?
We believe that Charles Parsons suggests the answer when he notes that:

the principle [of induction] refers to arbitrary predicates, without any
assumptions having been made about what counts as a predicate.
Like the principles of predicate logic itself, we have a purely formal
generalization about predicates, which is not a generalization over a
given domain of entities and could not be, since it is not determined
what predicates will or can be constructed and understood. (Parsons
1992, p. 143)

Our understanding of Parsons’ insight is as follows. Often when one makes a
generalization—say, that everything in some domain D has property P—one
justifies it by examining the objects in D. The most straightforward case would
be when one examines the elements of D one by one to see if they have prop-
erty P (as may happen when the domain D is finite). If we take this as our
model, we might be inclined to say that one cannot arrive at a generalization
about the elements of a domain D until one knows what is in the domain. But
this is not always true. The intuitionistic understanding of “every” illustrates
another possibility: even if D is indefinitely extensible, one might arrive at the
generalization that everything in D has property P by examining P, not the
elements of D, and realizing that something about P makes it true of anything
that we would allow into D, even if we do not yet know what is in D. This is
precisely what happens with induction, on the BU view. According to the latter,
we believe induction applies to all predicates, not because we have surveyed the
available predicates and noted that the induction principle applies to all of them
(this procedure would indeed lead to the feared self-undermining), but rather, as
we saw above, because of the extremal clause, which implies that induction will
apply to any predicate, even predicates not yet constructed. Thus, one should
not suppose that a grasp of the whole domain of predicates is needed in order
to understand why induction holds for all predicates. If this justification still
involves impredicativity, then it is an attenuated impredicativity that should be
distinguished from that present in the PD approach.

It may well be that an analysis of natural number that succeeds in justify-
ing the principle of induction will have either to be impredicative or to interpret
constructively the principle’s second-order quantifier. Someone who rejects these
two options will find it difficult not to reject the induction principle in its full
generality.!* In any event, one advantage of sharply distinguishing, as we have,
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between the two accounts of natural number is that doing so enables one to see
that the oft-repeated claim that all definitions of natural number are impredica-
tive elides interesting differences.'®

We would like to conclude, however, by stressing an important affinity be-
tween these two approaches, one that has perhaps not always been recognized.
In the case of both the PD and the BU definitions of natural number, something
has to be in place in order for them to be taken as intended by someone trying
to learn the meaning of “natural number.” In the first case, the learner must
understand the second-order quantifier as ranging over a pre-existing completed
totality of sets, including the set N itself. And in the second, the learner must
grasp the concept of finite iteration (perhaps because, as we saw constructivists
would insist, this is the only kind of iteration that is intelligible to him). With-
out this stage-setting, the definitions cannot be understood as intended by their
respective proponents.

It is important to notice that what must be in place is, in each case, akin to
a grasp of the very notion being defined. These definitions are not circular, but
taking them in the intended ways does presuppose some understanding of the
very concepts being defined. Let us call such definitions elucidations.!®

We do not want to say that elucidations must fail to convey the target con-
cepts to someone who does not already possess the relevant understanding. After
all, the BU and PD elucidations, as a matter of fact, often do help students to
acquire the defined notions. Rather, our point is that such elucidations cannot
convey these notions to someone who lacks them through being understood as
intended, for these definitions cannot be so understood except by someone who
already grasps in essence the notions being defined.

Elucidations that succeed in conveying an understanding of a term are com-
parable to speech to infants that facilitates acquisition of language. For such
talk likewise does not convey knowledge of language through its being under-
stood as intended—if it were so understood, there would be no need to convey
this knowledge.

We will not speculate here regarding how such learning is accomphshed We
do not know of any reason, though, for distinguishing between the BU and PD
conceptions as regards their conveyability. In the first place, the conceptions
behind the BU and the PD definitions are, of course, both infinitistic, and as
such neither can be exhaustively displayed by any observable stretch of human
behavior.

Secondly, if a learner lacks the relevant conceptions (say because they are not
given as part of his innate conceptual endowment), then, as just noted, he cannot
gain either of them by taking in their definitions as intended, for so understanding
them requires a grasp of something akin to those very conceptions. And if under
these circumstances a learner can nevertheless somehow work his way to the
target conceptions by taking in their definitions as other than intended, then,
pending further information regarding how this takes place, we cannot say that
the one conception is any more easily arrived at than the other.

Finally, if appeal to innate notions is made, there is no a priori reason why
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the one conception should be natively given to us and not the other. It might be
tempting to argue that there is such a reason, namely that the PD conception
is not intelligible and so not there to be given to us, whereas the BU conception
is. But if the argument for unintelligibility is ultimately grounded (as it often
is) on considerations of acquisition, we are plainly moving in a circle.

In conclusion, though we have been at pains to show that the above two
conceptions of natural number do indeed differ in significant ways, we cannot
say with any confidence that they do so in point of conveyability.!”

Notes

1. We are not concerned here about exactly how 0 and the successor operation
are defined. One could, for example, use von Neumann'’s set-theoretic definitions
0 =0 and S(z) = zU {z}, or one could regard numbers as strings of strokes and
take 0 to be the empty string and the successor operation to be the operation
of adding one more stroke to a string. The discussion in the rest of the paper
would apply equally to either definition.

2. Henri Poincaré seems to have been the first to note the link between a PD
approach to the natural numbers and a commitment to the completed infinite;
see sections VIII and XI of “The Last Efforts of the Logisticians” in (Poincaré
1952). Because Poincaré held that “There is no actual infinity” (p. 195, original
italics), he also rejected PD-type definitions of the natural numbers.

3. Although we have emphasized the strong connection between, on the
one hand, PD and platonism, and, on the other, BU and constructivism, note
that we have taken no position here regarding whether PD requires a platonist
perspective, or BU a constructivist one.

4. For example, if numbers are taken to be strings of strokes, we must ensure
that infinitely long strings of strokes are excluded from N.

5. The circularity becomes even more apparent if we try to formalize in set
theory the build-up method of forming the closure of a set A under an operation
f. The usual approach is to define recursively a sequence of sets Agp, A1, Az, ...
by letting Ag = A and, for each n, A,y = { f(z) : x € A, }. The set A, can
then be defined to be the union of all sets A,,. Of course, our sequence of sets
.is indexed by the natural numbers, so it would be circular to use this method
(with A = {0} and f = S) to define the natural numbers.

6. Poincaré may be the earliest proponent of the BU approach conscious of
the distinction between it and the PD perspective. According to one definition.
Poincaré says, “a finite whole number is that which can be obtained by successive
additions, and which is such that n is not equal to n — 1,” while the other
holds that, as he puts it, “a whole number is that about which we can reason by
recurrence.” Poincaré continues: “The two definitions are not identical. They are
equivalent, no doubt, but they are so by virtue of an a priort synthetic judgment:
we cannot pass from one to the other by purely logical processes” (“The New
Logics,” reprinted in (Poincaré 1952, p. 173), original italics). The “a prior:
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synthetic judgment” here is the validity of mathematical induction, for, as we
shall see shortly, inferring that induction holds from the BU definition requires
the use of induction itself. Because the second definition of natural number
(essentially, the PD account) is unacceptable to Poincaré (see note 2 above), he
concludes that the validity of mathematical induction cannot be established by
purely logical means from any adequate account of natural number and, hence,
that the logicist reduction of arithmetic fails.

7. Someone disturbed by a perceived inexplicitness in the BU definition
might alternatively offer the following amendment: specify that when the second
generation rule is iterated, the set of steps in the iteration must be Dedekind
finite, where a set is said to be Dedekind finite just in case it cannot be mapped
one to one onto any proper subset of itself. The amended definition is not
circular, for it does not employ the notion of “finite” or “natural number,” and
it avoids the use of induction in securing the effect of BU’s extremal clause. Yet,
this proposal would likewise be rejected by a proponent of BU for it continues
to involve an impredicativity. To say that a set is Dedekind finite is to say that
there does not exist a function of a certain kind. This claim therefore involves
quantification over all functions, including those defined in terms of the natural
numbers. (For example, this is the reason why Solomon Feferman and Geoffrey
Hellman (1995) chose not to take this approach; see their note 3 and page 15.)

8. Michael Dummett, for example, seems to suggest that no replacement for
the extremal clause is needed:

Even if we can give no formal characterisation which will definitely
exclude all such elements, it is evident that there is not in fact any
possibility of anyone’s taking any object, not described (directly or
indirectly) as attainable from 0 by iteration of the successor opera-
tion, to be a natural number. (Dummett 1978, p. 193)

9. Even those who accept the completed infinite can defend the extremal
clause of the BU definition against the criticisms of the platonist, if they are
willing to accept the concept of finiteness as being understood in advance of the
characterization of the natural numbers, and then to use this concept to express
the extremal clause. This seems to be the standpoint taken by Feferman and
Hellman (1995). Their approach, in effect, is to prove the existence of structures
satisfying Peano’s axioms by constructing an example of one. The universe
of their example is defined to be the set of all those objects x such that there
exists a finite set containing precisely the predecessors of £ under iteration of the
operation S, with 0 being the only one of these predecessors that does not itself
have a predecessor. This finite set could be thought of as recording the process
of constructing = by a finite iteration of the successor operation, beginning with
0, and thus this definition could be thought of as a version of the BU definition.
Note that it is important that the recording set be finite so as to ensure that
the iteration is finite. (For their analysis, see the first line of their proof of
Theorem 7 on p. 10, and their definition of “Fin” on p. 4. The requirement
that the recording set be finite is enforced in their formal system by the axiom
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(Card), which guarantees that the set is Dedekind finite. This axiom is used to
prove that the induction axiom holds in their example. For some discussion of
the history of this proposal, and further elaboration on the relationship between
their definition and the BU definition, see the following note.)

Feferman and Hellman call their approach “predicativism”, or “predicative
logicism”, and contrast it with classical logicism as follows:

Classical logicism provides a complete analysis of the concepts “fi-
nite”, “infinite”, and “cardinal number”, but at the price of im-
predicative comprehension with all of its attendant “metaphysical”
commitments. Predicativism avoids the latter but must presuppose
the concept of “finite” in some form or other. However, [...] it can
do this in a natural way without thereby taking the natural number
system as given. (p. 15)

The fact that predicativism must presuppose the concept “finite” will make
it unacceptable to anyone who believes that this concept is as much in need
of analysis as the concept “natural number”. As Daniel Isaacson (1987) sug-
gests, the predicativist definition will be successful only if (i) the second-order
quantifier in the definition ranges over a domain that includes all finite initial
segments of N, and (ii) the domain contains no infinite sets. He concludes that
the definition therefore “does not fare significantly better on the score of avoiding
impredicativity than the one based on full second-order logic” {p. 156). Feferman
and Hellman (1995, note 5, p. 16) argue in response that the existence of the
required finite initial segments can be justified predicatively, but it seems to us
that they have failed to answer part (ii) of Isaacson’s objection, namely that infi-
nite sets must be excluded from the domain of quantification. As we saw earlier,
it is this exclusion of infinite sets from the second-order domain that guarantees
that Feferman and Hellman’s definition will capture only natural numbers. In
fact the difficulty here is in effect the same as the difficulty that the platonist
finds with the BU definition; it is not the inclusion of the desired elements in the
domain that causes problems, but rather the exclusion of unwanted elements.

Charles Parsons also considers a similar definition and finds it wanting for
the same reason:

As a defense of the claim that induction on natural numbers is after
all predicative, this exercise is hardly impressive. What has been
assumed about finite sets will just reinforce the reply that although
perhaps one can escape the impredicativity of induction on natural
numbers, one merely throws the matter back to the notion of finite
set, where the same problems will arise. (Parsons 1992, p. 148)

10. Feferman and Hellman (1995, note 5), say that their approach “realizes
in effect a suggestion attributed to Michael Dummett”. This appears to raise a
problem for our analysis, according to which Feferman and Hellman’s proposal is
to be reckoned a BU approach to the natural numbers, for Dummett’s suggestion
was originally attributed to him by Hao Wang, who claims that it “is more
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closely related to the Frege-Dedekind definition [than to the approach of Zermelo,
Grelling, and Bernays, who manage without the axiom of infinity]” (Wang 1963,
p. 52).

Illumination of this apparent conflict is not furthered by the variation one
finds in descriptions of Dummett’s suggestion. Wang attributes to Dummett a
definition of “N” according to which k € N just in case

(i) (VX)((0e X & (Vy)(ye X &y # k) — S(y) € X)) — k € X) and
(i) BX)0e X & (Vy)((ye X &y #k) — S(y) € X)).

Parsons, referring to Wang’s attribution to Dummett, offers a definition similar
to (i) and (ii) and traces the idea back to Zermelo and Grelling (Parsons 1987, p.
206). Isaacson, by contrast, though likewise referring to Wang’s attribution to
Dummett, offers only clause (i). He adds, however, that in order for (i) “to define
anything” (ii) must also obtain for every k (Isaacson 1987, p. 155). Feferman
and Hellman (1995, note 5) apparently following Isaacson, also give only clause
(1) when describing Dummett’s definition. In spite of this, their actual definition
is closer to (ii) than to (i), being essentially existential rather than universal.

This confusing variation might be due to different assumptions about the
range of the definition’s second-order quantifier. If it is assumed to include
infinite sets, then (ii) alone will not suffice to exclude all non-numbers (since
each such will render it true, for X includes N in its range), but (i) will. Hence,
under this assumption, (ii) is superfluous and (i) will do by itself. On the other
hand, if the range of the second-order quantifier is taken to consist only of finite
sets of all sizes, then (i) will not suffice to exclude all non-numbers (since the
antecedent of its instances will be false, if k is not a natural number), whereas
(ii) will. Hence, in this second situation, (ii) by itself suffices and (i) is not
needed. Offering both clauses, as Wang does, will inevitably be redundant, but
may be appropriate if one wishes to provide a definition that works whether or
not infinite sets are included in the range of the second-order quantifier.

We are now in a position to resolve the conflict presented in the first para-
graph of this note. If one is imagining that second-order quantifiers range over
infinite sets, then Dummett’s definition effectively consists in clause (i) and Wang
is correct to assimilate it to Frege-Dedekind’s PD definition: for the elimination
of non-natural numbers will require N itself to be in the domain of second-order
quantification. On the other hand, if one takes these quantifiers to range only
over all finite sets, as Feferman and Hellman do, then Dummett’s definition in
effect amounts to (ii) and therefore, for reasons given in the previous note, should
be likened rather to the BU definition.

In this context, it is worth mentioning another definition of the natural num-
bers, this time first offered by Quine (1961); see also (Quine 1969, pp. 75ff.).
According to this definition, k£ € N just in case

(i) (VX)((k € X & (Vy)(S(y) € X — y € X)) = 0 € X).

If we assume that the second-order quantifier ranges over infinite sets, then this
definition captures all the natural numbers (since if & is a natural number then
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every set containing k and closed under predecessor will contain 0) and only them
(for if k is not a natural number, say an entity with infinitely many predecessors,
then the complement of N contains k and is closed under predecessor, but does
not contain 0, and hence the closure of {k} under predecessor will not contain
0).

However, contrary to Quine’s suggestion, the definition does not work to
exclude non-numbers if the range of the second-order quantifier is restricted to
finite sets of all sizes: for if k£ has infinitely many predecessors, then (iii) will be
vacuously true. If the domain is so restricted, then (iii) could be supplemented

by (iv):
(iv) @X)k e X & (Vy)(S(y) € X — y € X)).

It is certainly true that if k£ is a natural number, then there exists a finite set
containing k and closed under predecessor. Furthermore, if k¥ has infinitely many
predecessors, then it fails to satisfy (iv), for there will not exist a finite set of the
requisite kind. Can one, in this context, make do with (iv) alone? No, for (iv)
fails to rule out Caesar as a natural number, because there does exist a finite set
containing Caesar and closed under predecessor, namely {Caesar}. But, taking
X to be this set, we see that Caesar does not satisfy (iii). In sum, if the second-
order quantifier ranges only over all finite sets, then one emendation of Quine’s
definition consists of the conjunction of (iii) and (iv). (See (George 1987) and
(Parsons 1987, pp. 210-1).)

It is not easy to say where this particular emendation of Quine’s definition
falls in our classificatory scheme, for it contains elements of both the PD and
the BU approaches. There is, however, another way of supplementing (iii) that
leads to a more straightforward outcome. Consider:

(iv') GX)(ke X & (V) (S(y) e X »ye X) &
(Yy)((y € X &y #0) — (32)(S(z) = v)))-

Clearly, if k£ is a natural number, it satisfies (iv’). Also, (iv’) rules out all non-
natural numbers, including Caesar, since he is unequal to 0 and has no prede-
cessor. Hence, when the second-order quantifier ranges only over all finite sets,
(iii} is superfluous and can be replaced by (iv’). Furthermore, (iv’) is plainly in
the spirit of a BU approach to the natural numbers.

Although Feferman and Hellman say that their own approach realizes Dum-
mett’s definition, it is in fact closer to (iv’) than it is to (ii}, for their definition
employs closure under predecessor rather than closure under successor. (Their
definition differs from (iv’) in only one respect: they require that the set X be
the smallest set containing k and closed under predecessor. However, an exam-
ination of the proof of their Theorem 7 shows that this additional requirement
plays no role in the proof, and therefore could have been eliminated. Thus, (iv’)
captures the essence of Feferman and Hellman’s definition.)

Recently, Peter Aczel has shown that the existence of a structure satisfying
Peano’s axioms can be proven in Feferman and Hellman’s system without using
their axiom (Card), which restricts the range of the second-order quantifiers to

N T
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Dedekind finite sets (Feferman, personal communication). Aczel’s approach is,
roughly, to let the universe of the structure be defined by the conjunction of (iii)
and (iv), rather than (iv’). This conjunction characterizes the natural numbers
whether or not the range of the second-order quantifiers includes infinite sets.
However, if infinite sets are included then, as we observed earlier in this note,
the exclusion of non-numbers by (iii) requires reference to a collection, the com-
plement of N, that is defined in terms of N, the very set being defined. Thus,
despite Feferman and Hellman’s description of their formal system as “predica-
tively justified,” it seems questionable to us whether Aczel’s definition should be
called predicative. Aczel’s theorem can also be proven using the conjunction of
(i) and (ii), rather than the conjunction of (iii) and (iv). However, if infinite sets
are not excluded from the range of the second-order quantifiers, then the use of
(i) will once again render the definition impredicative.

11. There is a circularity in this argument, for mathematical induction will
be needed in order to show that P holds at every stage of the construction.
This is not a circularity in the BU definition of natural number; rather, it is
a circularity that appears in the justification of induction on the basis of that
definition. (It is reminiscent of the circularity Hume discovered in attempting
to justify empirical induction.) Yet the argument is, as Parsons has noted, “no
worse than arguments for the validity of elementary logical rules” (1992, p. 143).

One way of summarizing both this argument for induction from the BU
definition and the argument for why the PD definition captures only the natural
numbers (see above) is to say that the extremal clause and the principle of
mathematical induction are interderivable. For example, this is essentially what
S. C. Kleene says (1952, p. 22). While correct as far as it goes, we prefer not to
put the matter this way, for it obscures the distinctive approaches to the natural
numbers that we believe animate the two definitions.

Even more obscuring is to construe the extremal clause as saying that in-
duction is valid. Parsons, for example, at one time articulated the view that
the principle of induction “could be regarded simply as an interpretation of”
the extremal clause. Yet, he did not then advance the position and in fact also
mentioned the possibility that “the induction principle [...] will be in some way
a consequence of” the extremal clause (Parsons 1967, p. 194). More recently,
however, he appears to endorse this view, as when he describes induction as “a
principle cashing in our intention that the numbers should be what is obtained
by the introduction rules and those alone” (Parsons 1992, p. 143). This way of
viewing the matter no doubt contributes to his analysis of possible options:

The readily available alternatives to something like the induction-
definition model of the concept of natural number |[...] would be to
give it an explanation that is blatantly circular, such as, the natural
numbers are what is obtained by beginning with 0 and iterating the
successor operation an arbitrary finite number of times, or to take the
concept of natural number as given and the principle of induction as
evident without any explication connecting it with the concept of
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natural number. Either alternative seems to me a counsel of philo-
sophical despair that leaves us with no motivation for the principle
of induction. (Parsons 1992, p. 143)

Yet, as we have seen, these alternatives are not exhaustive, for the proponents
of the BU definition view it as neither “the induction-definition model of the
concept of natural number” (i.e., the PD definition), nor as circular, nor as
failing to provide a justification of induction.

Again, we are not arguing in favor of one or the other definition, but rather
attempting to delineate two philosophically distinct approaches to the nature of
number.

12. For example, this thought may be behind Parsons’ claim that “If one
explains the notion of natural number in such a way that induction falls out of
the explanation, then one will be left with a similar impredicativity”— similar,
that is, to the impredicativity of the PD definition (Parsons 1992, p. 141). For
a discussion, see (George 1987).

13. Parsons gives voice to this view as well when he suggests that “induction
is constitutive of the meaning of the term ‘natural number’” (Parsons 1992,
p. 155). Dummett, also, believes that “the meaning of the expression ‘natural
number’ involve[s], not only the criterion for recognising a term as standing for a
natural number, but also the criterion for asserting something about all natural
numbers” (Dummett 1978, p. 194).

14. Edward Nelson, for example, adopts a principle of induction restricted
to those predicates involving bounded quantification (Nelson 1986, p. 2).

Another example is (Feferman and Hellman 1995), in which the authors es-
tablish induction only for formulas containing no quantification over the collec-
tion of all classes. In fact, it can be shown that induction for all formulas is not
provable in their system EFSC*. The reason is that, if full induction were added
to EFSC* as a new axiom, it would be possible to define a satisfaction relation
and use it to prove that all theorems of PA are true in N, and therefore that PA
is consistent. But as Feferman and Hellman show in their Metatheorem 9, the
consistency of PA is not provable in EFSC*.

It might be helpful to spell out a few more of the details of this proof. The
satisfaction relation for formulas in the language of PA can be represented as a
function assigning to each pair (¢, s), where @ is a formula and s is an assignment
of values to the free variables of ¢, one of the values 1 or 0, representing true and
false. By assigning Goédel numbers to both formulas and assignments of values
to variables, we can think of this function as mapping NxN to {0,1}. Let us say
that a function from {0,1,2,...,n} x N to {0,1} is an n-satisfaction function if
it satisfies the usual recursive definition of satisfaction for formulas with Godel
numbers up to n. Then we can prove by induction that (Vn € N)(3F)(F is an n-
satisfaction function). Note that the formula being proven by induction contains
the quantifier “(3F)”, where “F” stands for an infinite class, so the weak form
of induction proven by Feferman and Hellman would not be sufficient for this
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proof. Our satisfaction relation Sat(z,y) can now be defined to be the formula:
(3F)(F is an z-satisfaction function & F(z,y) = 1).

It is interesting that full induction is provable in a slight strengthening of
Feferman and Hellman’s system. Let EFSC* be the same as EFSC*, except
with no restrictions on the formula ¢ in (Sep), the separation axiom for finite
sets. Then we can prove full induction in EFSC* by imitating the proof of
Feferman and Hellman’s Theorem 8. Let ¢(n) be any formula, and suppose
we have both ¢(0) and (Vn){(p(n) — ¢(n +1)). If -p(m) for some natural
number m, then let B = {n :n < m}, a finite set since m is a natural number,
and let Y = {n € B : —p(n)}. Then, as in Feferman and Hellman’s proof of
their Theorem 8, it can be shown that Y is both finite and Dedekind-infinite,
contradicting the cardinality axiom of EFSC*. Note that the definition of Y
requires the strengthened version of (Sep), since ¢ might involve quantification
over the collection of all classes.

It is difficult to say whether or not EFSC* should be considered predicative.
The strengthened version of (Sep) allows one to quantify over the collection of
all classes when defining a subset of a finite set, and such a definition would
appear to be impredicative. But even the original version of (Sep) allows one to
define a subset of a finite set by quantifying over the collection of all finite sets,
a collection that includes the very set being defined, and Feferman and Hellman
do not consider this to be impredicative. Their reason is that they “assume that
the notion of finite set is predicatively understood, governed by some elementary
closure conditions” (p. 2). Feferman and Hellman appear to take this to mean
that a definition of a set that involves quantification over the collection of all
finite sets is predicative, but one involving quantification over the collection of
all classes is not. Thus, they consider their version of (Sep) to be predicatively
acceptable, but would presumably reject the strengthened version of (Sep) as
impredicative.

Some might question whether such closure conditions for the collection of
finite sets should be considered to be predicatively acceptable. But if closure
conditions are to be accepted, we believe an argument can be made for a closure
condition that implies the strengthened version of (Sep). One way of justifying
such a closure condition would be to argue that given a finite set, it is possible
to make a finite list of all subsets of that set. Each of these subsets is definable
by a predicative definition that simply lists its elements. Any other definition of
a subset of the original finite set, even an impredicative one, must pick out one
of these subsets, whose existence has already been established by a predicative
definition. Thus, for any definition that specifies unambiguously which elements
of the finite set are to be included in a subset, there must exist a subset containing
precisely the elements specified by that definition. This reasoning would apply
whether the definition involves quantification over only the collection of all finite
sets or quantification over the collection of all classes, so it would justify not only
the original version of (Sep), but also the strengthened version.

15. For example, see the quotation from Parsons in note 12; see also (Nelson
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1986, pp. 1-2).
16. This term is suggested by Ludwig Wittgenstein’s (1921, 3.263).

17. Thus, we dissent from what seems to be Michael Dummett’s position in
(Dummett 1993b); see p. 443. For some further discussion, see (George 1994).
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