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Abstract

In most of the auction design literature, bidders are assumed to have quasilinear
preferences. Yet there are many economic environments where this restriction is vio-
lated: bidders may be risk averse, have wealth effects, face financing constraints or be
budget constrained. I study the canonical private value auction model for a single good
without the quasilinearity restriction. I assume only that bidders are risk averse and
the indivisible good for sale is a normal good. I show removing quasilinearity leads to
qualitatively different solutions to the auction design problem. Expected revenue is no
longer maximized using standard auctions that allocate the good to the highest bidder.
Instead, the auctioneer better exploits bidder preferences by using a mechanism that
allocates the good to one of many different bidders, each with strictly positive proba-
bility. I introduce a probability demand mechanism that treats probabilities of winning
the indivisible good like a divisible good in net supply one. With enough bidders, it has
greater expected revenues than any standard auction; and under complete information,
it implements a Pareto efficient allocation.
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1 Introduction

1.1 Motivation

Most of the auction design literature considers bidders with quasilinear preferences. In this
paper, I revisit the canonical private value auction design problem and I remove the quasi-
linearity restriction. Instead, I only assume that bidders are risk averse and have positive
wealth effects. This relaxation allows for a more complete description of bidder preferences
but also complicates standard economic analysis. With quasilinearity, a bidder’s incentives
are described by her valuation. Without quasilinearity, bidder’s incentives are also affected
by her risk preferences, financial constraints, and wealth effects. Thus, bidders’ types are
multidimensional and characterizing the optimal auction through a Myerson-like approach
proves intractable. For this reason, I take a new approach to studying the design problem and
I show that we get qualitatively different solutions relative to the quasilinear benchmark.
I propose an alternative to standard auctions called the probability demand mechanism.
The mechanism uses randomization to better exploit features of bidder preferences. While
the multidimensionality of bidder types inhibits explicit characterizations of equilibrium be-
havior, I form a partial characterization of bid behavior, and use this to obtain revenue
comparisons. Specifically, I eliminate dominated strategies to bound a bidder’s report. I
use this bound on bid behavior to show that the probability demand mechanism has greater
revenues than any standard auction when there are enough bidders.

Risk aversion is relevant in a variety of commonly studied auction settings. As an exam-
ple, consider firms bidding on spectrum rights or oil tracts. The corporate finance literature
shows that many firms have an internal spending hierarchy (Fazzari, Hubbard and Petersen
(1988)). Firms prefer to use internal versus external financing, because they pay higher
interest on money borrowed from third parties. A firm may be able to place a relatively
low bid in an auction without needing external financing, but in order to place a relatively
high bid, the firm may need to obtain external financing and pay a higher interest rate on
this debt. Consequently, even if firms are risk neutral, such financing constraint makes them
behave as though they have declining marginal utility of money.

I show that the auctioneer can use randomization to increase revenue. This result may
seem counterintuitive with risk averse bidders, but the intuition follows directly from the
assumption that the good is normal. When a good is normal, a bidder’s willingness to pay
for it increases with her wealth. Similarly, her willingness to pay for any given probability
of winning the good increases with her wealth. Therefore, the bidder is willing to pay the
most for her first marginal ‘unit’ of probability of winning, before she has spent any of her
wealth. Thus, the bidder is willing to buy a small probability of winning the good at a price
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per unit of probability that exceeds her willingness to pay for the entire good. Standard
auctions that allocate the good to the highest ‘bidder’ do not make use of this property of
bidder preferences.

There is prior work suggesting the use of randomization in specific auction design settings
- for example, when bidders have strict budget constraints. My contribution beyond this is
two-fold. First, I show that the auctioneer’s desire to use randomization is driven by the
normal good assumption. This result does not require a restriction to specific a functional
form or a single dimensional type space. Second, I introduce a new approach to analyze bid
behavior when types are multidimensional. Instead of solving for equilibria, my approach
focuses on obtaining bounds on bid behavior. I show this partial characterization of bid
behavior is sufficient for obtaining revenue comparisons.

Specifically, I construct a probability demand mechanism that uses lotteries to better
exploit bidder preferences. The mechanism sells probabilities of winning the good like a
divisible good that is in net supply one. Bidders report a demand curve over probabilities of
winning. The curve reports the probability of winning the bidder demands (Q) for a given
price per unit of probability (P ). The auctioneer uses an algorithm similar to that of the
Vickrey auction for a divisible good to determine each bidder’s probability of winning and
expected payment.

I study the revenue properties of the probability demand mechanism in a setting that
nests the benchmark independent private types case, but also allows for correlated types.
Removing quasilinearity makes it difficult to explicitly solve for equilibria. Instead, I form a
lower bound on bid behavior by using the normal good assumption. I use this partial charac-
terization of bid behavior to construct a lower bound on expected revenues in the probability
demand mechanism. With enough bidders, this lower bound on revenues strictly exceeds an
analogously constructed upper bound on revenues from any standard auction. That is, with
enough bidders the probability demand mechanism has higher expected revenues than any
standard auction (Propositions 3 and 4). This class of standard auctions includes the first
price, second price and all pay auctions, as well as modifications of these formats to allow
for entry fees and/or reserve prices. When there are relatively few bidders, I use a numerical
example to show that the probability demand mechanism can have (non-negligibly) greater
revenues than standard auctions.

I also show that under complete information, the probability demand mechanism is an
efficient mechanism. My motivation for studying the complete information case is driven
by recent impossibility results regarding the dominant strategy implementation of Pareto
efficient allocations for cases where bidders have non-quasilinear preferences. While imple-
menting efficient allocations under incomplete information may prove to be impossible, under
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complete information any undominated Nash Equilibria of the probability demand mecha-
nism is Pareto efficient. This is not true of standard auctions that assign the good to the
highest bidder.

The rest of the paper proceeds as follows. The remainder of the introduction relates my
work to the current literature on auction design. Section 2 describes the model and specifies
the assumptions I place on bidders’ preferences. Section 3 motivates the use of probabilis-
tic allocations. Section 4 outlines the construction of the probability demand mechanism.
Section 5 focuses on revenue comparisons between the probability demand mechanism and
standard auction formats. Section 6 provides a numerical example illustrating the practical
applicability of my results. Section 7 discusses efficiency. Section 8 concludes.

1.2 Related literature

The seminal papers in the private value auctions literature assume that bidder preferences
are quasilinear.1 Yet, there is empirical and experimental research that argues that there are
many settings where bidders are risk averse.2 In the theoretical literature most research that
studies auctions with risk averse bidders fits into one of two categories: (1) comparing the
performance of standard auction formats, and (2) studying the design of optimal auctions.
In the first category, Matthews (1983, 1987) and Che and Gale (2006) compare first and
second price auctions. These papers show that the first price auction typically yields higher
revenue than the second price auction. The payoff environment considered by Che and Gale
(2006) is closest to the one studied here. In particular, their setting allows for risk aversion,
wealth affects, and multidimensional heterogeneity.

However, this paper fits into the second category of papers that study the auction de-
sign problem. Maskin and Riley (1984) are the first to study to the properties of revenue
maximizing auctions when bidders are not quasilinear. Their paper studies the case where
bidders’ types are single dimensional and i.i.d., but not quasilinear. They show that the
exact construction of the optimal mechanism depends on the distribution of types and the
functional form of the bidders’ utility. Their setting is general enough to include bidders
with wealth effects and/or risk aversion, but is limited to cases with single dimensional het-
erogeneity and i.i.d types. This paper expands on their analysis by considering the auction
design problem when bidders can have multidimensional and correlated types.

A recent line of research has studied the related question of auction design when bidders
have budgets. Laffont and Robert (1996) and Pai and Vohra (2014) construct revenue

1See Vickrey (1961), Myerson (1981) and Riley and Samuelson (1981).
2See Budish and Takeyama (2001), Goeree, Holt and Palfrey (2002), and Bajari and Hortaçsu (2005),

among others.
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maximizing auctions when bidders have budgets. They consider a setting with i.i.d. types
and show that the auctioneer can increase revenues by using randomization. In this paper, I
show that with many bidders, randomization can increases revenue in a more general setting
that allows for budgets as a limiting case, but also includes any case where bidders have
positive wealth effects.

Unlike most other papers in the auction design literature, my model allows for mul-
tidimensional heterogeneity across bidder types. The multidimensionality complicates the
Myersonian approach of characterizing bidders interim incentive constraints. Thus, I take a
new approach to studying the auction design problem. Instead of explicitly characterizing
equilibria, I show that by placing bounds on bid behavior, we can construct a mechanism that
obtains higher revenues than standard auctions when there are many bidders. Armstrong
(1999) takes a similar approach to studying a different problem, that of a multi-product
monopolist selling to a representative consumer. In Armstrong’s model, consumers have
multidimensional types. He is describes qualitative features of an almost optimal solution
for the monopolists when there are many products.

In addition, I show that my probability demand mechanism is Pareto efficient in a com-
plete information setting. My focus on the complete information case is motivated by the
recent work of Dobzinski, Lavi and Nisan (2012). They show that when bidders have private
budgets, there is no mechanism that is dominant strategy implementable, Pareto efficient
and satisfies a no budget deficit condition. Thus, while it is impossible to obtain an effi-
cient and detail free mechanism with incomplete information, this paper is able to provide
a prescription for efficient implementation under complete information.

While prior authors have studied cases where bidders have budgets or are risk averse,
there are few papers that look specifically at the case where the good being sold is a normal
good. Outside of auctions, recent work by Garratt and Pycia (2014) has studied the efficient
bilateral trade problem of Myerson and Satterthwaite (1983). They show that when the
good being traded is normal, efficient bilateral trade is possible in certain cases.

2 The model

2.1 The payoff environment

Consider a private value auction setting for an indivisible good with a single risk neutral
seller and N � 2 buyers, indexed by i 2 {1, . . . , N} . Bidder i’s preferences are described by
utility function u

i

, where
u

i

: {0, 1}⇥ R ! R.
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Let u

i

(1, w

i

) denote bidder i’s utility with wealth w

i

when she owns the object. Similarly,
u

i

(0, w

i

) denotes bidder i’s utility with wealth w

i

when she does not own the object. Note
that I allow bidders to have negative wealth. I could similarly assume that bidders are able
to spend at most w

i

> 0, and the analysis would be unchanged.
The object is a “good” and not a “bad,” thus

u

i

(1, w) > u

i

(0, w), 8w.

Additionally, assume that bidders preferences are strictly increasing and twice continuously
differentiable in wealth.

Let k(u
i

, w

i

) be bidder i’s willingness to pay for the good when she has an initial wealth
w

i

and a utility function u

i

. Formally k(u

i

, w

i

) is implicitly defined by

u

i

(1, w

i

� k) = u

i

(0, w

i

). (2.1)

I place two additional restrictions on bidder preferences. First, I assume that the good
being sold is a normal good (i.e. positive wealth effects). My notion of positive wealth effects
is analogous to the notion in the divisible goods case, where a bidder’s demand for the good
increases as her wealth increases for a constant price level.

Assumption 1. (Positive wealth effects)
Bidder i has positive wealth effects:

@k(u

i

, w)

@w

> 0, 8w 2 R.

Second, I assume that bidders have strictly declining marginal utility from money.

Assumption 2. (Risk Averse)
Bidder i has declining marginal utility of money:

@

2
u

i

(x, w)

@w

2
< 0 for x = 0, 1.

And,Let U be the set of all utility functions which satisfy Assumptions 1 and 2. Quasilinear
preferences are not included in U as @k(w,ui)

@w

= 0 and @

2
ui(x,w)
@w

2 = 0. However, quasilinear
preferences can be thought of as a limiting case of the environment.
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2.2 Incomplete information setting

I make revenue comparisons between the probability demand mechanism and standard auc-
tions, under the assumption that bidder types are conditionally independent. The condi-
tionally independent types assumption is not needed to form bounds on bid behavior in the
probability demand mechanism.

I describe bidder i’s preferences by her type t

i

, where t

i

2 T ⇢ RM and M is finite and
T is a compact subset of Rm. I let the first element represent bidder i’s initial wealth level
w

i

. A bidder with type t

i

has preferences described by the utility function u(x, w, t

i

) when
her type is t

i

. I assume that all bidders’ preferences have declining marginal utility of money
and positive wealth effects. That is, for any t

i

2 RM , u(x, w, t
i

) 2 U . At the same time, this
setup allows for heterogeneity across multiple dimensions. I do not place restrictions on the
functional forms of bidders’ utility functions. While the standard quasilinear model allows
for heterogeneity in ‘valuations’, this setup allows for heterogeneity across risk preferences,
initial wealth levels and financing constraints.

I assume that the profile of bidder types (t1, . . . , tn) are conditionally independent. I
introduce aggregate demand uncertainty by allowing for different states of the world. There is
a finite number of states of the world, s1, . . . , sJ 2 S. Conditional on state s, bidder types are
i.i.d. draws of a random variable with distribution function F (t|s), where F : T ⇥S ! [0, 1].
There is a g(s

j

) probability of state s

j

occurring, where
P

J

j=1 g(sj) = 1. Note that if J = 1,
this is the benchmark i.i.d. case. A bidder observes her type, but not the state of the world.

2.3 Allocations and mechanisms

By the revelation principle, I can limit attention to direct revelation mechanisms. A mech-
anism describes how the good is allocated and how transfers are made. Let A be the set of
all feasible assignments, where

A := {a| a 2 {0, 1}N and
NX

i=1

a

i

 1},

where a

i

= 1 if bidder i is given the object. A feasible outcome � specifies both transfers
and a feasible assignment: � 2 A⇥RN

. I define � := A⇥RN as the set of feasible outcomes.
A (probabilistic) allocation is a distribution over feasible outcomes. Thus, an allocation ↵ is
an element of �(�).

Let E
↵

[u

i

, w

i

] denote the expected utility of bidder i under allocation ↵ 2 �(�) when
she has preferences u

i

and initial wealth w

i

. Similarly, let E
↵

[u0] be the expected revenue
for the auctioneer under allocation ↵. A direct revelation mechanism M maps a profile of
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reported preferences and initial wealth levels to an allocation. That is,

M : UN ⇥ RN ! �(�).

3 Probabilistic allocations

I propose a probability demand mechanism that uses randomization to increase revenue ver-
sus standard auctions. The value of randomization stems from the normal good assumption.
With a normal good, a bidder is willing to pay the most for her first ‘unit’ of probability of
winning the good. As the bidder becomes poorer, she is willing to pay less for a marginal
increase in her probability of winning. To formalize this intuition, I show that a bidder’s
demand for probabilities of winning the indivisible good is similar to a consumer’s demand
for a divisible normal good. If we imagine that probabilities of winning are sold at a con-
stant per unit price p, then bidder i has a demand curve for probability units q

i

that is (1)
decreasing in p, and (2) positive for some values of p that exceed her willingness to pay for
the indivisible good.

Without quasilinearity, the structure of a bidder’s payment affects her payoff. Consider
a gamble where bidder i wins the good with probability q and pays x in expectation. I call
a payment scheme efficient if, given a bidder’s expected payment and probability of winning
the good, her payments maximizes her expected utility. In the efficient payment scheme,
bidder i pays p

⇤
w

and p

⇤
l

contingent on winning or losing, respectively, where

(p

⇤
w

, p

⇤
l

) = argmax

pw,pl

qu

i

(1, w

i

� p

w

) + (1� q)u

i

(0, w

i

� p

l

).

s.t. x = qp

w

+ (1� q)p

l

.

In the probability demand mechanism, bidders’ payments are structured efficiently. Thus,
given bidder i’s probability of winning and expected payment, the auctioneer constructs a
payment scheme to maximize her expected utility. This is useful, because with many bidders,
the auctioneer is able to extract the additional surplus generated by efficient payments.

Assuming efficient payments, I construct an indirect utility function V

i

that is a function
of her expected payments and the probability she wins the good.

V

i

(q,�x) := max

pw,pl
qu

i

(1, w

i

� p

⇤
w

) + (1� q)u

i

(0, w

i

� p

⇤
l

).

s.t. x = qp

⇤
w

+ (1� q)p

⇤
l

.

The indirect utility function gives the maximal expected utility for bidder i conditional on
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winning the object with probability q and paying x in expectation.
I use bidder i’s indirect utility function to define her probability demand curve q

i

.

q(p, u

i

, w

i

) := arg max

q2[0,1]
V

i

(q,�qp). (3.1)

I economize notation by writing bidder i’s probability demand curve as q

i

(p) = q(p, u

i

, w

i

).

A bidder’s probability demand curve has similar properties to demand curves for divisible
normal goods.

Proposition 1. a
If bidder i has preferences u

i

2 U , initial wealth w

i

and willingness to pay k

i

, then

(1) q

i

(p) is continuous and weakly decreasing,

(2) q

i

(k

i

+ ✏) > 0 for some ✏ > 0.

The first point is similar to that made by Garratt (2012), who shows that consumers
demands of probability units of an indivisible good satisfies a law of demand. In addition,
the second point will be useful for my analysis, as it shows that any bidder with positive
wealth effects is willing to accept a gamble where she pays a price per unit of probability
that exceeds her willingness to pay for the indivisible good.

As an example, consider a bidder i, with initial wealth 100 and preferences described by

u(x, w) = 4I
x=1 +

p
w.

Note that the utility function satisfies assumptions 1 and 2.3 If bidder i faces a gamble where
she wins the good with probability q and pays x in expectation, then the efficient payment
is such that she makes an equal payment in the win state and the lose state. Thus,

V

i

(q,�x) = 4q +

p
100� x.

The corresponding probability demand curve is illustrated in Figure 3.1.
Bidder i is only willing to pay 64 for the good, as u(1, 100 � 64) = u(0, 100) = 10.

However, if probability units are sold at a constant per unit price p, then bidder i demands
a positive probability of winning the good at any p that is below 80.

Standard auctions do not make use of this feature of bidder preferences. For example,
in the first or second price auction, bids are bounded by a bidders willingness to pay for
the good. The auctioneer can increase her revenue by selling lotteries instead. Prior work

3This utility function is not defined over negative wealth levels. This will not be relevant in the analysis
shown below as the bidder’s wealth will never approach zero. This is meant to be used as an illustration.
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Figure 3.1: A probability demand curve

has shown that using lotteries can increase seller revenue when bidders have budgets. I use
Proposition 1 to show that we can similarly use randomization to increase the revenue for
selling any normal good when there are enough bidders.

4 The probability demand mechanism

Proposition 1 shows that if a bidder is indifferent between accepting or rejecting a take-it-
or-leave-it offer for the good at a price of k, there are gambles she strictly prefers where she
wins the good with positive probability q and pays strictly greater than qk in expectation.
A natural way to exploit the above bidder preference is to introduce randomization to the
auction design. Perhaps the simplest such design is selling raffle tickets at a fixed price
per ticket. For a straightforward example, imagine a case where all bidders are identical.
The auctioneer sells each bidder a ticket that gives a 1

N

probability of winning. With enough
bidders, the auctioneer can set the (expected) price of the ticket to be greater than 1

N

k (where
k is a bidder’s willingness to pay) and still sell all N tickets. Thus, this simple mechanism
could already raise more money than a first or second price auction, where revenues are
bounded by bidders’ willingness to pay for the good. However, it is easy to find cases where
raffles perform poorly. Determining the appropriate ticket price requires the auctioneer to
have precise information on the distribution of bidder types. Even if the auctioneer were
to know the underlying distribution of bidder types, there may be correlation across bidder
types. If bidders have correlated types, in a relatively high demand state the auctioneer
would want to sell more expensive raffle tickets. In a lower demand state, bidders may not
want to buy tickets at this relatively high price. At the same time, the auctioneer is unable to
extract information on the aggregate demand state using Cremer and McLean-style gambles
because bidders are risk averse.

Instead of suggesting a raffle, I introduce a probability demand mechanism that sells
the indivisible good as though it were a divisible good in net supply one sold through a

10



Vickrey auction. The mechanism has the advantage of being detail free when compared to
raffles. Moreover, it is approximately revenue maximizing with many bidders, while standard
auctions and raffles are not.

4.1 The probability demand mechanism

In the probability demand mechanism, a bidder reports her probability demand curve q(p, u
i

, w

i

),
preferences u

i

and initial wealth level w
i

.4 The reported q

i

must be such that q

i

is contin-
uous, q

i

(0) = 1, and lim

p!1 q

i

(p) = 0. The auctioneer uses the reported demand curves
to calculate each bidder’s probability of winning and expected payment. Given a bidder’s
probability of winning and expected payments, her payments are then structured efficiently.

The probability that bidder i wins the object is calculated using the reported probability
demand curves. Given the reported demand curves, the auctioneer calculates the (lowest)
price for probabilities of winning the good that ‘clears the market.’ That is, she finds the
(lowest) price p

⇤ where the total reported demand for probabilities of winning the good
equals one:

p

⇤
:= inf

p

{p : 1 =

NX

i=1

q

i

(p)}. (4.1)

The price p

⇤ determines each bidder’s probability of winning and it turns out that bidder i

wins with probability q

i

(p

⇤
).5

The price p

⇤ is not the per unit price bidders pay for probabilities of winning the good.
Instead each bidder faces a probability supply curve that represents her marginal price
curve for probabilities of winning the good. The supply curve is the residual demand for
probabilities of winning. It is analogous to the residual demand curve in a Vickrey auction
for a divisible good. Thus, the price a bidder pays for a unit of probability depends on her
rivals’ actions.

Given a price p, a bidder’s probability supply curve S
i

(p) states the amount of probability
of winning the good that is not demanded by the N � 1 other bidders.

S

i

(p) =

8
<

:
1�

P
j 6=i

q

j

(p) if 1�
P

j 6=i

q

j

(p) > 0

0 otherwise

(4.2)

Bidder i’s (reported) probability demand curve equals her probability supply curve at the
price p

⇤. Thus, the market clearing price sets each bidder’s probability demand curve equal
4At the end of this subsection I discuss how the amount of information bidder’s report can easily be

reduced. For exposition, I first study when bidders report ui, wi and q.
5Since we assume qi is continuous we have that 9p s.t. 1 =

PN
i=1 qi(p).
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to her probability supply curve.
Bidder i’s expected payments are determined by treating her probability supply curve as

her (expected) marginal price curve. Her expected payment to the auctioneer is X

i

, where,

X

i

=

ˆ
p⇤

0

tdS

i

(t). (4.3)

I suppress notation in writing X

i

; it is a function of the complete profile of reported demand
curves (q1 . . . qN). Figure 4.1 illustrates this graphically.

qiHpL

i's expected
payment

SiHpL

0.0 0.2 0.4 0.6 0.8 1.0q0

2

4

6

8
p

Figure 4.1: Expected payment in the probability demand mechanism.

Thus, the reported probability demand curves determine each bidder’s expected transfers
and probability of winning the good. If the profile of reported demand curves (q1 . . . qN) is
such that bidder i wins with probability q

i

(p

⇤
) and pays the auctioneer X

i

in expectation,
she makes an efficient payment. If bidder i reports her preferences to be u

i

and her initial
wealth to be w

i

, she pays p

⇤
i,w

when she wins and p

⇤
i,l

when she loses where,

(p

⇤
i,w

, p

⇤
i,l

) = argmax

pw,pl

q

i

(p

⇤
)u

i

(1, w

i

� p

w

) + (1� q

i

(p

⇤
)) u

i

(0, w

i

� p

l

). (4.4)

s.t. X

i

= q

i

(p

⇤
)p

w

+ (1� q

i

(p

⇤
))p

l

.

Definition 1. (The probability demand mechanism)
The probability demand mechanism maps reported demand curves (q1, . . . , qN), preferences

(u1 . . . uN

), and initial wealth levels (w1 . . . wN

) to a probabilistic allocation described by

(4.1)� (4.4).

The probability demand mechanism can be modified so that bidders only submit a probability
demand curve to the auctioneer. This is done using a two-step procedure. Bidders first
submit probability demand curves and each bidder’s probability of winning and expected
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payments are calculated as discussed above. The auctioneer then tells each bidder her
probability of winning q

i

(p

⇤
) and her expected payment X

i

. Before the winner is selected,
each bidder decides how to structure her payments, given that her probability of winning is
q

i

(p

⇤
) and her expected payment is X

i

. Alternatively, the auctioneer can use an ascending-
bid clinching mechanism, as described in Ausubel (2004), to determine bidders’ probabilities
of winnings and expected payments. This alternative would not require bidders to submit a
probability demand curve.

4.2 Behavior in the probability demand mechanism

I derive a bound on bidders’ reports by showing that it is a dominated strategy for a bidder
to underreport her demand for winning probabilities. The intuition for this result can be
understood graphically. Consider the hypothetical case where bidder i faces a perfectly elastic
probability supply curve, and thus, pays a constant marginal price for units of probability of
winning. Let this price be p

E

. The bidder seeks to maximize her expected utility given this
price p

E

. The solution to this maximization problem is q

i

(p

E

), because q

i

(p

E

) is defined as
the probability of winning the good that she desires when she pays price of p

E

per unit of
probability. Thus, truthful reporting is a best response. By truthful reporting, she wins the
good with probability q

i

(p

E

) and pays p

E

q

i

(p

E

) in expectation.

qiHpL
SiHpLp*

i's expected
payment

0.0 0.2 0.4 0.6 0.8 1.0q

2

4

6

8
p

Figure 4.2: Expected payment when facing a perfectly elastic supply curve.
Suppose, instead, bidder i faces a more inelastic (relative to perfectly elastic) probabil-

ity supply curve. Suppose her residual probability demand curve still passes through the
(arbitrary) point (p

E

, q

i

(p

E

)). If bidder i truthfully reports her probability demand curve,
she wins the good with the probability q

i

(p

E

). Thus, her probability of winning the good
is the same as it was when she faced the perfectly elastic supply curve. However, she pays
less when she faces the more inelastic supply curve. The marginal price she pays for all
but the final unit of probability she acquires is less than p

E

. Thus, she pays X

i

which is

13



less than p

E

q

i

(p

E

) for a q

i

(p

E

) probability of winning. It is as though she faced a perfectly
elastic supply curve with constant price p

E

, and then is given a refund of p
E

q

i

(p

E

)�X

i

� 0.
Positive wealth effects imply that this refund increases her demand of the good relative to
the case where she simply pays the price of p

E

per unit of probability.

qiHpL

p*

SiHpL

i's expected
payment

0.0 0.2 0.4 0.6 0.8 1.0q

2

4

6

8
p

Figure 4.3: Expected payment when facing a relative inelastic supply curve.

It was a best response for bidder i to truthfully report her demand curve when she faced
a constant marginal price curve, but with an upward sloping marginal price curve she has an
incentive to over report her demand curve. Since bidders report downward sloping demand
curves, bidder i will always face an upward sloping marginal price curve. The precise amount
that bidder i wants to over report her demand curve depends on the elasticity of the supply
curve she expects to face. Her incentive to over report is greater when facing a more inelastic
supply curve (larger ‘refund’). What is clear is that it is never a best reply for bidder i to
under report her demand curve. This observation allows us to use bidder i’s truthful report
as a lower bound on her actual report.

Proposition 2. a
Assume bidder i has probability demand curve q

i

(p). Reporting a probability demand curve

q̃

i

where q̃

i

(p) < q

i

(p) for some p 2 R+ is weakly dominated by reporting q, where

q

i

(p) = max{q
i

(p), q̃

i

(p)}.

Proposition 2 shows that truthful reporting can serve as a lower bound on a bidder’s
possible report. This lower bound on a bidder’s report enables revenue comparisons between
the probability demand mechanism and other auctions.
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5 Revenue comparisons

I show that with sufficiently many bidders, a lower bound on expected revenues from the
probability demand mechanism exceeds the expected revenues of a large class of standard
auctions.

5.1 A revenue upper bound for all mechanisms

Consider the highest per unit price where a bidder still demands a positive probability of
winning. Let p

i

be such a per unit price for bidder i, her choke price for probabilities of
winning. This is a function of a bidder’s type,

p(t

i

) := sup

p

{p : q(p, t

i

) > 0}.

Since preferences u are continuous in t, it follows that p(t

i

) is continuous in t

i

. I let P be
the highest expected choke price of any bidder.

P := E max

i=1,...,N
p(t

i

).

Since T is compact, P < 1. The price P is an upper bound on the expected revenues from
any interim individually rational mechanism. A mechanism with expected revenues that
exceed P necessarily violates some bidder’s interim individual rationality constraint because
bidder i is never willing to pay more than p(t

i

) for a unit of probability.

5.2 Revenues from the probability demand mechanism

I use Proposition 2 to show that with many bidders, a lower bound on expected revenue
from the probability demand mechanism approaches the expected revenues upper bound P .
For ease of notation I write R(N) as the expected revenue from truthful reporting in the
probability demand mechanism when there are N bidders.

Proposition 3. a
For any ✏ > 0, 9N⇤

such that for all N > N

⇤
,

R(N) > P � ✏.

To see the intuition for this result, suppose that the bidder with the highest willingness to
pay for a unit of probability is bidder 1. Bidder 1 is willing to pay p(t1) for her first marginal
unit of probability. Thus bidder 1 demands a strictly positive probability of winning for
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any price that is under p(t1). With many bidders, there are many other bidders with types
similar to bidder 1. Thus, there are many bidders who demand a positive probability of
winning at a price slightly lower than p(t1). With enough bidders, this means the residual
demand for units of probability at price p(t1)�✏ is zero. If a bidder does win the good with a
positive probability, she pays a per unit price that exceeds p(t1)�✏. Thus, expected revenues
exceed p(t1) � ✏. In expectation, this means revenues exceed P � ✏, which gives the above
result. By combining this with Proposition 2 , we see that when bidders play undominated
strategies, expected revenues exceed P � ✏ when there are many bidders.

I illustrate this for a special case where bidders all have initial wealth of 100 and prefer-
ences u given by

u(x, w) = 4I
x=1 +

p
w.

By assuming that bidders truthfully report their probability demand curves, I obtain a lower
bound on a bidder’s residual probability demand. As N increases, the lower bound on the
residual probability demand curves approaches the expected revenue upper bound of P = 80.

N=3

N=2

N=5

qi!p"

WTP = 64

0.2 0.4 0.6 0.8 1.0
q

55

60

65

70

75

80

p

Figure 5.1: Bounds on residual probability demand curves.

5.3 Revenue comparisons with standard auction formats

While the probability demand mechanism approaches the expected revenue upper bound of
any individually rational mechanism, the expected revenues from standard auction formats
do not approach this upper bound, even with many bidders.

To see this, first consider the first and second price auctions. In each format, it is a
dominated strategy for a bidder to submit a bid that exceeds her willingness to pay for the
good. Thus, expected revenues are bounded by the highest willingness to pay of any bidder.
I call K where

K = E
✓

max

i=1,...,N
k

i

◆
.
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Yet, Proposition 1 shows that each bidder is willing to purchase a positive amount of proba-
bility of winning at a price per unit that exceeds her willingness to pay for the (entire) good.
That is, if bidder i has preferences such that, u

i

(1, w

i

� k

i

) = u

i

(0, w

i

), then p(t

i

) > k

i

. In
the probability demand mechanism, with many bidders, the expected revenue approaches
the expected highest price any agent is willing to pay for positive probability of winning the
good, P . Thus, the expected revenues from the probability demand mechanism P strictly
exceed the expected revenues upper bound first price or second price auction K when there
are sufficiently many bidders.

Corollary 1. a
Assume that bidders play undominated strategies. When N is sufficiently large, expected

revenues from the probability demand mechanism exceed expected revenues from the first or

second price auctions.

This result generalizes to a broad class of indirect mechanisms where bidders submit
single dimensional bids. In particular, I focus on ‘highest bid wins’ mechanisms, where a
bidder receives the object only if she submits the highest bid and leaves the auction at no
cost by bidding 0. Thus, I study mechanisms where each bidder reports a bid b

i

2 R+. The
indirect mechanism M maps the N bids to a distribution over feasible outcomes:

M : RN

+ ! �(�).

If b
i

= 0, bidder i makes no transfers and wins the good with 0 probability. This is equivalent
to allowing bidders free exit from the auction. I allow for a minimum bid, that I call b

min

.

Definition 2. (Highest bid mechanism)
The indirect mechanism M is a highest bid mechanism if bidder i is given the object if and

only if she is submits the highest bid and it is at least the minimum bid b

min

.

max

j 6=i

b

j

> b

i

=) a

i

= 0, and b

i

> max

j 6=i

b

j

, b

min

=) a

i

= 1.

If b

i

= 0, then bidder i pays 0 and a

i

= 0.

This class of mechanisms the first price, second price and all pay auctions. It also includes
each of these formats with entry fees or reserve prices.

Most commonly studied auction formats have the property that along the equilibrium
path, the probability of a tie is zero. With a sufficient amount of heterogeneity in preferences,
this is to be expected. This property is always true of any equilibrium of a first price or all
pay auction. I say that an equilibrium of a highest bid mechanism is a “no-tie” equilibrium
if in equilibrium there is a zero probability of a tie along the equilibrium path.
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Definition 3. (No-tie equilibrium)
A Bayesian Nash Equilibrium of a highest bid mechanism is a “no-tie” equilibrium if in

equilibrium:

P (b

i

= max

j 6=i

b

j

|b
i

> b

min

) = 0 8i.

Whether or not a mechanism has a no-tie equilibrium depends on the underlying distri-
bution of preferences and states and how the mechanism M structures payments.

For a given distribution of preferences, there is an upper bound on the expected revenues
in any “no-tie” equilibrium of a highest bid mechanism. The upper bound is independent
of the number of bidders and is strictly less than the revenue upper bound derived for any
interim individually rational mechanism.

Proposition 4. a
There exists an ↵ > 0 such that for any N , the expected revenues from any no-tie Bayesian

Nash Equilibrium of a highest bid mechanism are less than P � ↵.

This shows that, when there are many bidders, any no-tie equilibrium of a highest bid
mechanism gives strictly lower expected revenues than the probability demand mechanism.

6 A numerical example

The results from the previous section show that the expected revenues from the probability
demand mechanism exceed the expected revenues from standard auction formats when there
are sufficiently many bidders. This leads to other questions. First, how many bidders are
needed for the probability demand mechanism to generate greater revenues than standard
auction formats? And second, how much greater are the revenues from the probability
demand mechanism than other auction formats?

The answers to both questions depends on the assumed distribution of preferences. To
further study these questions, I consider a particular setting that is embedded in my model:
financially constrained bidders. Each bidder must borrow money to finance her payments
to the auctioneer. The interest rate rises in the amount that she borrows. This is a similar
setting to that studied by Che and Gale (1998). I find that revenues from the probability
demand mechanism exceed those from standard auction formats, even with a small number
of bidders. The differences in revenues are non-negligible.

For the example, assume each bidder has a valuation of the good v

i

, where v
i

⇠ uniform[5, 15].

I depart from the quasilinear environment by assuming that bidders are financially con-
strained. In order to make payments bidders borrow money from the bank. The interest
rate paid on a loan of m dollars is r(m), where
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r(m) =

m

100

.

Thus, bidder’s payoff is given by

u

i

(x,�m) = v

i

I
x=1 �m(1 + r(m)).

The financing constraint is the only departure from the quasilinear environment.
Even with few bidders, the probability demand mechanism has expected revenues that

exceed the revenues of standard auction formats. Using the methodology developed in section
3, a bidder’s probability demand curve can be expressed as,

q

i

(p) =

8
<

:
max{1, 50

p

⇣
vi�p

p

⌘
} if

50
p

⇣
vi�p

p

⌘
> 0

0 if p > v

i

.

I compare the lower bound on expected revenues from the probability demand mechanism
to the expected revenues of the first and second price auctions. I assume bidders truthfully
report their demand curves to obtain the lower bound on revenues in the probability demand
mechanism. Applying results of Che and Gale (1998) gives the equilibrium bidding function
for the first price auction. In the second price auction, it is a dominant strategy for a bidder
to bid her willingness to pay for the good.6 Figure 6.1 illustrates the revenue comparisons
between the three formats using Monte Carlo simulations.

Ê
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Ê
Ê
Ê
Ê
Ê Ê Ê Ê Ê Ê Ê Ê Ê
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‡
‡
‡
‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

Ï

Ï

Ï
Ï
Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï

FPA / SPA 
Highest willingness to pay
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Ï
‡
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Figure 6.1: Revenue comparisons between formats

The line marked with circles is the revenue lower bound for the probability demand
mechanism. The line marked with squares represents the revenues of both the first and
second price auction. The results of Che and Gale (1998) show the first price has greater
expected revenues than the second price auction when bidders face financing constraints. In

6The equilibrium bid functions are bf (vi) = 10
q

25 + 5
N + N�1

N vi � 50 and bs(vi) = 10
p
25 + vi � 50.
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this environment, the difference in expected revenues between first and second price auctions
are relatively small when compared to the expected revenue difference between either format
and the probability demand mechanism. When there are 4 or more bidders, the lower bound
on expected revenues from the probability demand mechanism exceeds the expected revenues
of the first and second price auctions. Also, the difference in expected revenues between the
two formats grows as the number of bidders increases. As the number of bidders increases,
expected revenue from the probability demand mechanism approaches 15. Yet in the first and
second price auctions, as the number of bidders increases, the expected revenues approach
the highest possible willingness to pay of any bidder. Here, this is 13.24.

The diamond marked line is the expected value of the highest bidder’s willingness to pay
for the good. When there are 21 or more bidders, the lower bound on revenues from the
probability demand mechanism will actually exceed any bidder’s willingness to pay for the
(entire) good in expectation.

7 Pareto Efficiency

Now consider the question of efficient auction design. When bidders have quasilinear prefer-
ences, a second price auction implements a Pareto efficient allocation. This is not the case
when we remove quasilinearity. As an example, consider a case with two bidders who each
have initial wealth of 100 and preferences u

i

(x, w) = 4x +

p
w. If the goods are sold by a

second price auction, both bidders bid their willingness to pay, which is 64. Thus, the object
is randomly allocated to one of the two bidders, and is sold for 64. Since the bidders pay
their willingness to pay, conditional on winning, both bidders have an expected utility of 10.
As an alternative, suppose that each bidder buys lottery ticket that gives a 1

2 probability of
winning. Assume that each lottery ticket is sold for a price of 32. In this case, a bidder gets
expected utility 1

2(4) +
p
100� 32 ⇡ 10.25, and the auctioneers revenue is 64. Thus, the

outcome of the second price auction is Pareto dominated.
Without quasilinearity, the impossibility result of Dobzinski, Lavi, and Nisan (2012)

shows that under incomplete information, it is impossible to construct a mechanism that
implements a Pareto efficient allocation in dominant strategies. While it is impossible to
implement an efficient allocation under incomplete information, I show with complete infor-
mation, the probability demand mechanism implements a Pareto efficient allocation. Specifi-
cally, I show that for any profile of bidder types, there is a Nash Equilibrium that implements
an efficient allocation, and that any Nash Equilibrium in undominated strategies is Pareto
efficient. This is not true of standard auctions, as we see in the above example.

My notion of Pareto efficiency under complete information is equivalent to most notions of
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ex-post Pareto efficiency used in games of incomplete information (see for example, section
3 of Holmstrom and Myerson (1983)). Suppose that bidder preferences are described by
(u1, . . . , uN

).7 I say an allocation ↵ 2 �(�) is Pareto efficient if there is no other allocation
↵

0 2 �(�) that gives greater or equal expected revenues and increases at least one bidder’s
expected utility without decreasing any other bidder’s expected utility.

Definition 4. (Pareto Efficiency)
An allocation ↵ 2 �(�) is Pareto efficient if @ ↵

0 2 �(�) such that

E
↵

[u

i

, w

i

] � E
↵

0
[u

i

, w

i

], 8i = 1, . . . , N,

and

E
↵

[u0] � E
↵

0
[u0],

where at least one of the above holds with a strict inequality.

In this section, I place one additional restriction on my mechanism. I assume that bidders
must report probability demand curves where q

�1
i

is continuous. This ensures that a bidder
faces a continuous marginal price curve, and in equilibrium all winning bidders have the
same marginal willingness to pay for a unit of probability.

There exists a Nash Equilibrium of the probability demand mechanism that implements
a Pareto efficient allocation. Let p⇤ be the market clearing price if bidders report their types
truthfully. Suppose that bidder i plays the strategy q̃

i

, where

q̃

i

(p) =

8
<

:
q

i

(p) if p � p

⇤

1 if p < p

⇤
.

Remark 1. The pure strategy profile (q̃1, . . . , q̃N) is a Nash Equilibrium of the probability
demand mechanism.

Thus, there exists a Nash Equilibrium in undominated strategies. Next, I show that any
Nash Equilibrium in undominated strategies is Pareto efficient. I use the notation U

i

to
describe the set of undominated strategies for bidder i.

Proposition 5. a
Suppose that (q̂1, . . . , q̂N) is a pure strategy Nash Equilibrium of the probability demand mech-

anism. In addition, suppose that q̂

i

2 U

i

8i. Then �(q̂1, . . . , q̂N) is Pareto efficient.

7It is without loss of generality to assume wi = 0 8i. To see this, note that a bidder with initial wealth
wi and preferences ûi behaves the same as a bidder with initial wealth 0 and utility ui(x, d) = ûi(x,wi + d).
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8 Conclusion

In the auctions literature, it is standard to restrict bidders’ preferences to be quasilinear. The
quasilinearity restriction allows for tractable analysis of bid behavior and provides specific
prescriptions on how to maximize revenue. However, there are many economic environments
where the quasilinearity restriction is violated. This includes cases where bidders have risk
aversion, wealth effects or face financing constraints.

Relaxing quasilinearity leads to qualitative differences in auction design problems. In-
stead of using standard auctions where the good is given to the highest bidder with prob-
ability one, the auctioneer prefers mechanisms where she can allocate the good to one of
many different bidders, each with strictly positive probability.

These results rest only on the weak assumption that the good being sold in the auction is
a normal good. The normal good assumption ensures that bidders are willing to buy positive
probabilities of winning the good at prices per unit that exceed their willingness to pay of
the entire good. Standard auction formats, in which the good is sold to the highest bidder,
do not use this feature of bidder preferences.

I propose a probability demand mechanism that better exploits features of bidders’ risk
preferences. The mechanism uses tools from the multiunit auctions literature - it sells the
indivisible good like a perfectly divisible good that is in net supply one by selling bidders
probabilities of winning. With enough bidders, the probability demand mechanism has
greater revenues than any standard auction.

While the multidimensionality of the type space makes explicit characterizations of the
equilibria intractable, I still can obtain a partial characterization of bidder behavior by using
the normal good assumption. In particular, I place lower bounds on what a bidder reports
to the auctioneer. Using the bounds on bidders’ reports, I construct a lower bound on the
expected revenues from the probability demand mechanism. With many bidders, the lower
bound on revenues from the probability demand mechanism exceeds an upper bound for
revenues for a large class of standard auctions.

A natural extension of this paper would apply the methodology developed here to an
interdependent values setting. The properties of bidder preferences that motivate the use
of probabilistic allocations in the private values case remain present in the interdependent
values case; thus, similar results should be expected. Similarly, we should expect analogous
results to hold in multiunit settings.
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9 Appendix

Proof of Proposition 1. Recall that q

i

(p) is defined as

q

i

(p) = arg max

q2[0,1]
V (q,�qp).

Since V is continuous and increasing in both arguments, then q

i

is weakly decreasing in p.
Next, I show that q

i

(p) is continuous in p. Suppose that q
i

is discontinuous at some p̂ > 0

and let q

l

:= lim

p!p̂

+
q

i

(p) and q

h

= lim

p!p̂

�
q

i

(p). Thus, q
h

> q

`

by assumption. Since V

i

is
continuous in both arguments V

i

(q

l

,�p̂q

l

) = V

i

(q

h

,�p̂q

h

) =

1
2 (Vi

(q

l

,�p̂q

l

) + V

i

(q

h

,�p̂q

h

)).
Let x

w

and x

l

be the efficient payments when i wins with probability q

l

and pays p̂q

l

in
expectation. Similarly, let y

w

and y

l

be the efficient payments when i wins with probability
q

h

and pays p̂q
h

in expectation. For simplicity, I use the following notation: G(w) := u

i

(1, w)

and B(w) := u

i

(0, w). Rewriting Vi(ql,�p̂ql)+Vi(qh,�p̂qh)
2 , gives

q

l

G(w

i

� x

w

) + (1� q

l

)B(w

i

� x

l

) + q

h

G(w

i

� y

w

) + (1� q

h

)B(w

i

� y

l

)

2

,

If x
w

6= y

w

and/or x

l

6= y

l

, then Jensen’s inequality implies

q

l

G(w

i

� x

w

) + q

h

G(w

i

� y

w

)

2

<

q

l

+ q

h

2

G(w

i

� q

l

x

w

+ q

h

y

w

q

l

+ q

h

)

and/or

(1� q

l

)B(w

i

� x

l

) + (1� q

h

)B(w

i

� y

l

)

2

<

✓
1� q

l

+ 1� q

h

2

◆
B(w

i

�(1� q

l

)x

l

+ (1� q

h

)y

l

1� q

l

+ 1� q

h

).

Let q
m

=

ql+qh

2 , z
w

=

qlxw+qhyw

ql+qh
and z

l

=

(1�ql)xl+(1�qh)yl
1�ql+1�qh

. Note that p̂q
m

= q

m

z

m

+ (1� q

m

)z

l

and
V

i

(q

m

,�q

m

p̂) >

1

2

(V

i

(q

l

,�p̂q

l

) + V

i

(q

h

,�p̂q

h

)) = V

i

(q

l

,�p̂q

l

).

This contradicts that q

l

= argmax

q2[0,1] V (q,�qp̂).

Finally I show that q
i

(k

i

+ ✏) > 0 for some ✏ > 0. Given that q
i

is continuous and weakly
decreasing, it suffices to show that q

i

(k

i

) > 0. Suppose that q
i

(k

i

) = 0. Then

B(w

i

) = V

i

(1,�k

i

) = G(w

i

) = V

i

(0, 0) � V

i

(

1

2

,�1

2

k

i

).

Since B and G are strictly increasing, continuous and differentiable, then B

�1 and G

�1 are
strictly increasing, continuous and differentiable. We can then rewrite a bidders willingness
to pay as a function of her initial wealth, k(u

i

, w) = w�G

�1
(B(w)). By the inverse function
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theorem, @k(ui,w)
@w

is,
@k(u

i

, w)

@w

= 1� 1

G

0
(G

�1
(B(w)))

B

0
(w).

Positive wealth effects imply @k(ui,w)
@w

> 0. Thus,

@k(u

i

, w)

@w

> 0 =) G

0
(w � k(u

i

, w)) > B

0
(w).

At w = w

i

this implies that

@

@w

G(w

i

� k

i

) >

@

@w

B(w

i

).

Thus, for a sufficiently small ✏ > 0

1

2

(G(w

i

� k

i

+ ✏) + B(�✏)) >

1

2

(G(w

i

� k

i

) + B(w

i

)) = u

i

(0, w

i

) = V

i

(0, 0).

The definition of V
i

implies

V

i

(

1

2

,�1

2

k

i

) � 1

2

(G(w

i

� k

i

+ ✏) + B(�✏)) > V

i

(0, 0).

This contradicts that V

i

(0, 0) � V

i

(

1
2 ,�

1
2ki).

Proof of Proposition 2. I prove this by showing that if stating the demand curve q̃

i

instead of q
i

does change bidder i’s payoff, she receives a lower payoff.
Consider a case where i faces a perfectly elastic residual probability demand curve (i.e.

a constant marginal price per unit of probability). It is a best response for her to truthfully
reveal her demand curve. Let p

E

> 0 be the constant marginal price for units of probability.
If her payoff is changed by reporting q̃

i

, then q̃

i

(p

E

) < q

i

(p

E

). By the definition of q
i

, then
q

i

(p

E

) = q

i

(p

E

). That is, if reporting q̃

i

does change her payoff, it is the case that, q̃

i

is strictly below her demand for probability at p

E

. By the construction of the probability
demand curve, truthful reporting is a best response to a perfectly elastic supply curve. Thus,
she decreases her payoff by reporting type q̃

i

. Recalling that V
i

is her indirect utility function
under efficient payments, it follows that

V

i

(q

i

(p

E

),�p

E

q

i

(p

E

)) � V

i

(q,�p

E

q) for any q 2 (0, 1).

Now consider instead that bidder i faces a more inelastic (relatively to perfectly elastic)
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residual probability demand curve. Assume that the supply curve is such that S

i

(p

E

) =

q

i

(p

E

). Once again if her payoff is changed by reporting q̃

i

, then q̃

i

(p

E

) < q

i

(p

E

) = q

i

(p

E

),
using the same argument as before. Thus, she wins with a lower probability by reporting
q̃. Assume that if she reports q̃

i

, she pays ˜

X in expectation and wins with probability
q̃(p̃

⇤
), where q̃

i

(p̃

⇤
) = S

i

(p̃

⇤
). Since her marginal price is strictly below p

E

, ˜

X < p

E

q̃

i

(p̃

⇤
).

If she instead reports q

i

, she wins with probability q

i

(p

E

) and pays a marginal price below
p

E

for the incremental probability of winning gained by reporting q

i

. Thus, she pays X 
˜

X + p

E

(q

i

(p

E

)� q̃

i

(p̃

⇤
)). Let Y = p

E

q̃

i

(p̃

⇤
)� ˜

X > 0. Thus, it is sufficient to show that

V

i

(q

i

(p

E

),�p

E

q

i

(p

E

) + Y ) � V

i

(q̃

i

(p̃

⇤
),�p

E

q̃

i

(p̃

⇤
) + Y ).

Since we have already shown that the above expression holds true at Y = 0, it is then
sufficient to show that when Y > 0 and q  q

i

(p

E

),

d

dq

V

i

(q,�p

E

q + Y ) � 0.

Since the above function is concave in q (see pf. of Proposition 1), it suffices to show this at
q = q

i

(p

E

). Note that

d

dq

V

i

(q,�p

E

q + Y ) =

@

@q

V

i

(q,�p

E

q + Y )� p

E

@

@Y

V

i

(q,�p

E

q + Y ).

When Y = 0, the necessary first order condition defining q

i

(p

E

) implies that

d

dq

V

i

(q,�p

E

q) = 0 if q = q

i

(p

E

).

Thus, it suffices to show that increasing Y does not decrease the above derivative,

d

dY

d

dq

V

i

(q,�p

E

q + Y ) � 0 if q = q

i

(p

E

), Y > 0.

Rewriting the above expression, we find

d

dY

d

dq

V

i

(q,�p

E

q + Y ) =

@

@Y

@

@q

V

i

(q,�p

E

q + Y )� p

E

@

2

@Y

2
V

i

(q,�p

E

q + Y ).

Note that by the envelope theorem, @

@q

V

i

(q,�p

E

q+ Y ) = u

i

(1, w� x

w

)� u

i

(0, w� x

`

) where
x

w

(or x
`

) is the efficient payment conditional on winning (or losing) with probability q and
paying �p

E

q + Y in expectation. As Y increases, the efficient payment made when winning
and losing both decrease, thus, bidder i finishes with a greater wealth conditional on winning.
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Since this increases her utility conditional on winning, then @

@Y

@

@q

V

i

(q,�p

E

q + Y ) � 0. The
second term is negative since bidders have declining marginal utility of money. Thus

d

dY

d

dq

V

i

(q,�p

E

q + Y ) � 0 if q = q

i

(p

E

), Y > 0.

This implies,
V

i

(q

i

(p

E

),�p

E

q

i

(p

E

) + Y ) � V

i

(q̃

i

(p̃

⇤
),�p

E

q̃

i

(p̃

⇤
) + Y ),

which is what we wanted to show. ⇤

Proof of Proposition 3. I use the notation, q(p, t

i

) to represent the probability
demand curve for a bidder with type t

i

. I let f

s

be the density of bidder types conditional
upon the state of the world being s. Let P (s) = max{p(t) : t 2 supp(f

s

)}. Fix ✏ > 0. Let
⌧(✏, �, s) := {t : q(P (s)� ✏, t) > �, t 2 supp(f)}. This is the set of all types that demand at
least a � probability of winning in state s, at price P (s)� ✏. By the definition of P (s), the
set ⌧(✏, �, s) is non-empty when � > 0 is sufficiently small.

Note that:
NX

i=1

q

i

(P (s)� ✏, t

i

) � �

NX

1=i

I
ti2⌧(✏,�,s).

This states that the total demand at price P (s)� ✏ is greater than the � times the number
of bidders whose demand strictly exceeds � at P (s).

Suppose that �
P

N

1=i

I
ti2⌧(✏,�,s) > 2. It follows that S

i

(P (s)� ✏) = 0 for all i. That is, if at
price P (s)� ✏, all bidders demands for probabilities of winning exceed 2, then there is zero
residual demand for each bidder at price P (s)� ✏. Thus, if i wins with positive probability,
she pays a marginal price per unit that exceeds P (s) � ✏. Thus, X

i

� q

i

(p

⇤
)

�
P (s)� ✏

�
for

all i. Since
P

q

i

(p

⇤
) = 1, this implies that total expected transfers exceed P (s)� ✏:

NX

i=1

X

i

> P (s)� ✏.

When � > 0 is sufficiently small, there is a strictly positive probability a randomly drawn
bidder has type t 2 ⌧(✏, �, s). That is, there is a positive probability that a randomly drawn
bidder demands at least a � probability of winning the good when she pays a price of P � ✏.
Let ⌫(✏, �, s) represent this probability:

⌫(✏, �, s) =

ˆ
t2⌧(✏,�,s)

f

s

(t)dt.
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Suppose � > 0 is such that ⌫(✏, �, s) > 0. Then, by the law of large numbers, as N ! 1 the
probability that the sum �

P
N

1=i

I
⌧2v(✏,�,s) exceeds 2 approaches 1. Note that we can apply

the law of large numbers as I
ti2⌧(✏,�,s) is a Bernoulli random variable which is independent of

i and equals one with probability v(✏, �, s).
Thus, for any ↵ 2 (0, 1), there is a finite N(↵) such that there is a 1�↵ probability that

�

P
N

1=i

I
ti2v(✏,�,s) > 2. This holds for all s. Since ↵ and ✏ are arbitrary, let them be arbitrarily

close to 0 when N is sufficiently large. Thus with a sufficiently large N , total payments
exceed P (s)� ✏ with probability 1�↵, where both ↵ and ✏ are arbitrarily small. Since there
are only finitely many states of the world, we can say that for any ✏ > 0, ↵ 2 (0, 1), there is
an N is sufficiently large such that there is at least a 1 � ↵ probability that that revenues
exceed P (s)� ✏ 8s 2 S. This yields the desired result. ⇤

Proof of Proposition 4. Let V (q,�x, t

i

) be the indirect utility function of type t
i

2 T ,
under efficient payments. Before I begin the proof, it will be useful to show that 8t

i

, 9� > 0

s.t.

V (0, 0, t

i

) > V (q, � � qp(t

i

), t

i

),

for any q � 1
2 . That is, any gamble where type t

i

wins with probability q � 1
2 and pays

qp(t

i

) � � necessarily violate her individual rationality constraint. This is useful, because
then we know that if bidder i wins with a high interim probability, she must pay a price per
unit of probability that is strictly below p(t

i

)� �.
Recall that we have already shown that V (q,�qp, t

i

) is strictly concave in q for any t

i

(this is shown in the proof of proposition 1). In addition, since p(t

i

) is bidder i’s maximal
willingness to pay for a unit of probability, then

d

dq

V (q,�qp(t

i

)) < 0 8q 2 (0, 1).

If this did not hold, then bidder i would demand a positive probability when the price of
units is p(t

i

). Thus,

V (0, 0, t

i

) > V (

1

2

,�1

2

p(t

i

), t

i

) > V (q,�qp(t

i

), t

i

), 8q > 1

2

.

Since V is continuous, then 8q 2 [

1
2 , 1], 9 R(q, t

i

) > 0 s.t.

V (0, 0, t

i

) = V (q, R(q, t

i

)� qp(t

i

), t

i

).
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Let R(t

i

) = min

q2[ 12 ,1]
R(q, t

i

) and ↵ = min

ti2T
R(ti)
2 . Thus, we have that 8t

i

, 9↵ > 0 s.t.

V (0, 0, t

i

) > V (q,↵� qp(t

i

), t

i

).

Let Q
i

(t

i

) be i’s interim probability of winning. I analogously define X
i

(t

i

) as bidder i’s
interim expected payment. Let Q be the probability that the good is won, from the ex-ante
perspective.

NX

i=1

ˆ
t2T

Q
i

(t)f(t)dt = Q.

Feasibility requires that Q  1. I assume Q > 0, or else individual rationality requires that
expected revenue is 0. Let p = min

t2T p(t). This is the lowest amount than any bidder is
willing to pay for her first marginal unit of probability. Note that

(1�Q)p+

NX

i=1

ˆ
t2T

Q
i

(t)p(t)f(t)dt  P .

The right hand side is the highest expected willingness to pay (for a unit of probability) of
any bidder. The left hand side is the expected willingness to pay of the winner if we instead
gave the object to a bidder with the lowest possible willingness to pay whenever the direct
mechanism states the object is not sold. In other words, the left hand side is the expected
value of the winner’s p(t) term, if instead we always assign the good, but do not necessarily
give the good to the bidder with the highest p(t) term.

Let g := min

s=1,...,S g(s). That is, each state occurs with a probability of at least g. Given
the state of the world s, let G(b|s) be the distribution of highest submitted bids. Note that
G(b|s) is continuous and weakly increasing over (b

min

,1) by the no-tie assumption. Let
b

⇤
(s) be such that b⇤(s) = inf

b�bmin{b : G(b|s) � 1
2}. That is given state s, there is at least a

1
2 probability that the highest bid is below b

⇤
(s). Let b

⇤
= max

s2S b
⇤
(s). Thus, if b

i

(t) � b

⇤,
then Q

i

(t) � 1
2 8i, as there is at least a 1

2 probability that b

⇤ is a winning bid in any state
of the world.

Suppose that b

⇤
> b

min

. Let A

i

be the set of all types for bidder i such that A

i

:=

{t|Q
i

(t) � .5}. We know that if t is such that b

i

(t) � b

⇤, then t 2 A

i

. Thus, the probability
the good is won by a bidder with type t 2 A

i

is

NX

i=1

ˆ
t2Ai

Q
i

(t)f(t)dt � 1

2

g,

because there is a 1
2 probability the good is won by a bidder who bids b > b

⇤ in at least one
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state.
Ex-ante expected revenues are

NX

i=1

ˆ
t2T

X
i

(t)f(t)dt =

NX

i=1

ˆ
t2Ai

Q
i

(t)

X
i

(t)

Q
i

(t)

f(t)dt+

NX

i=1

ˆ
t2AC

i

Q
i

(t)

X
i

(t)

Q
i

(t)

f(t)dt.

Note that if t 2 A

i

, then individual rationality requires that Xi(t)
Qi(t)

 p(t) � �. In addition,
individual rationality requires that Xi(t)

Qi(t)
 p(t) 8t 2 T . Thus, we can rewrite the right hand

side as

NX

i=1

ˆ
t2T

Q
i

(t)p(t)f(t)dt� �

NX

i=1

ˆ
t2Ai

Q
i

(t)f(t)dt 
NX

i=1

ˆ
t2T

Q
i

(t)p(t)f(t)dt� 1

2

�g,

where the inequality follows because
P

N

i=1

´
t2Ai

Q
i

(t)f(t)dt � 1
2g. Recalling that

P
N

i=1

´
t2T Q

i

(t)p(t)f(t)dt 
P , we can rewrite the right hand side of the above expression and say that expected revenue
is bounded by

P � 1

2

�g.

Now suppose instead that b

⇤  b

min

. Then then there is at least a .5 probability that the
highest bid does not exceed b

min

. Thus Q  1
2 . Recall, from earlier we showed that,

(1�Q)p+

NX

i=1

ˆ
t2T

Q
i

(t)p(t)f(t)dt  P .

and that revenue is bounded by
P

N

i=1

´
t2T Q

i

(t)p(t)f(t)dt. Thus, expected revenue is bounded
by

NX

i=1

ˆ
t2T

Q
i

(t)p(t)f(t)dt  P � (1�Q)p.

Because Q  1
2 , we have that expected revenue is bounded by P � 1

2p. Thus, revenues are
bounded by min{P � 1

2p, P � 1
2�g}. Letting ↵ = max{1

2p,
1
2dg} yields our desired result. ⇤

Proof of Remark 1. Suppose that bidder i reports demand curve q̂

i

. If bidder i wins
the same number of probability units by reporting q̂

i

, her payoff is unchanged. Suppose that
bidder i wins a strictly greater number of probability units q

h

by bidding q̂

i

. She pays X
h

in
expectation for these q

h

probability units. Since S

i

(p) = 0 if p < p

⇤, then X

h

� p

⇤
q

h

. Recall
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that by definition of q
i

,

V

i

(q

i

(p

⇤
),�p

⇤
q

i

(p

⇤
)) � V

i

(q

h

,�p

⇤
q

h

) � V

i

(q

h

,�X

h

).

Thus, reporting q̃

i

is a best reply to q̃�i

. ⇤

Proof of Proposition 5. Suppose that that market clearing price bidders report
(q̂1, . . . , q̂N) is p̂⇤. Thus, the marginal price of an additional unit of probability is p̂⇤. Suppose
that bidder i wins q̂

i,NE

:= q̂

i

(p̂

⇤
) units of probability and pays x̂

i

in expectation in the Nash
Equilibrium. Her indirect utility is then

V

i

(q̂

NE

,�x̂

i

).

If q̂
i,NE

= 0, then p̂

⇤ is such that q
i

(p̂

⇤
) = 0. If not, then q

i

(p̂

⇤
) > 0 and bidder i can increase

her payoff by reporting her demand truthfully. Recall bidder i faces a (continuous) marginal
price curve for units of probability. Note that continuity is guaranteed by the fact that all
bidders report probability demand curves that have continuous inverses. Thus, the necessary
first order condition implies that if q̂

i,NE

> 0,

@V

i

(q̂

NE

,�x̂

i

)

@q

= p̂

⇤@Vi

(q̂

NE

,�x̂

i

)

@x

.

Let !
i

= q̂

i,NE

p̂

⇤�x̂

i

. Suppose that instead of starting with initial wealth 0, each bidder starts
with an initial wealth of !

i

. Then, p̂⇤ is the Walrasian equilibrium for units of probability.
This holds as the function V

i

(q, x� qp) is concave in q (shown in proof of proposition 1) and
the necessary first order condition stated above holds as !

i

� q̂

i,NE

p̂

⇤
= x̂

i

. The first welfare
theorem then implies that this is Pareto efficient. ⇤
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