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Abstract

I study an auction for a divisible good where bidders have private values and private

budgets. My main result shows that when bidders have full-support beliefs over their

rivals’ types, a clinching auction played by proxy-bidders implements a Pareto e�cient

outcome. The auction is not dominant strategy implementable, but it can be solved

using two rounds of iterative deletion of weakly dominated strategies. The predictions

do not require that bidders share a common prior and they place no restrictions on

higher-order beliefs. The results provide a contrast to recent work that shows there

is no mechanism with VCG’s desired incentive and e�ciency properties when bidders

have non-quasilinear preferences and multi-dimensional types.
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1 Introduction

The Vickrey-Clarke-Groves (VCG) mechanism is celebrated as a major achievement in the

theory of mechanism design. However, the practical applicability of the VCG mechanism is

limited when there is a di↵erence between a bidder’s willingness to pay for goods and her

ability to pay. In particular, the VCG mechanism loses its desired incentive and e�ciency

properties when bidders are budget constrained. In this paper, I propose an alternative to

the VCG mechanism for multi-unit auction environments where bidders have private values

and private budgets. Specifically, I show when bidders have full-support beliefs of their rivals’

types, a clinching auction played by proxy bidders yields a Pareto e�cient outcome. The

mechanism is not dominant strategy implementable, but instead it can be solved using two

rounds of iterative elimination of dominated strategies.

The question of auction design with budgets is important for practical applications, as

budgets feature prominently in many well-studied auction markets and directly a↵ect bid

behavior in standard auctions.1 In online ad auctions used by Yahoo! and Google, Dobzin-

ski, Lavi, and Nisan (2012) argue that budgets are an important consideration when firms

determine their bids. In another example, Rothkopf (2007) recalls his consulting experience

to argue that budgets limit the usefulness of the Vickrey auction. He advised a firm that

valued a license at $85 million, yet was only able to finance a $65 million bid. Maskin (2000)

claims that budgets should be a consideration for governments selling publicly-owned assets.

He says that budgets are especially important in developing economies, as bidders are less

likely to have easy access to well-functioning credit markets.

VCG is ine�cient when bidders have budgets but prior work provides alternatives to

VCG that are e�cient, under the restriction that budgets are public (see Maskin (2000)

and Dobzinski, Lavi, and Nisan (2012)). In their paper, Dobzinski, Lavi, and Nisan (2012)

(hereafter, DLN) show that a clinching auction is e�cient and dominant strategy incentive

compatible when budgets are public. The public budget restriction is useful from a theoretical

perspective, as it allows us to model bidders as having one-dimensional types. However, in

practice, bidders’ access to credit and liquidity is often private information. For example,

Google’s auctions for television ad space solicit information on bidders values and budgets

(see Nisan et al. (2009)). In addition, DLN argue that budgets are more salient to bidders

than their valuations.

Thus, understanding e�cient auction design with private budgets is important for prac-

1For single object auctions, Che and Gale (1996, 1998, 2006) look at the private values case, and Fang
and Parreiras (2002, 2003) and Kotowski (2018) study interdependent value cases. In the multiunit auctions
literature, see Rothkopf (1977), Palfrey (1980), Benoit and Krishna (2001), Brusco and Lopomo (2008), and
Pitchik (2009).
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tical applications. Unfortunately, DLN provides a negative result on this topic. They show

that when bidders have private budgets, there is no dominant strategy incentive compatible

mechanism that gives an e�cient outcome and satisfies weak budget balance. More recently,

Baisa (2017) shows that there is no mechanism that retains VCG’s desired properties if bid-

ders have multi-dimensional private information. While DLN show that a clinching auction

is e�cient when budgets are public, when budgets are private the clinching auction loses

its desired incentive and e�ciency properties. This is because when bidders have private

budgets, they have an incentive to overreport their budgets allowing them to win more units

at a lower price per unit. DLN use this result to motivate their impossibility theorem. In

a follow up paper, Bhattacharya et al. (2010) recognize the ine�ciencies that result from

bidders overreporting budgets, and show that a clinching auction is e�cient when bidders

are exogenously assumed unable to overreport their private budgets. This assumption sim-

plifies the design problem, but it also limits the applicability of their results. In practice, we

assume the auctioneer is unable to observe bidders’ private information. If a bidder is able

to overreport her private information, then it is still the case that DLN’s impossibility result

implies that there is no e�cient auction that is dominant strategy implementable.2

In contrast to this prior work, which gives impossibility results related to e�cient auction

design in multi-dimensional type spaces without quasilinearity, I study the e�cient auction

design problem and obtain positive results. I obtain a positive result by relaxing using a

slightly weaker solution concept than dominant strategy. In particular, I show that a clinching

auction played by proxy bidders is e�cient and solvable using two rounds of iterative deletion

of dominated strategies. The mechanism satisfies ex-post individual rationality and provides

bidders with an incentive to report their private information truthfully.

There are two main reasons for these contrasting results. First, prior work studying

auctions with private budgets place no restrictions on bidders’ beliefs over their rivals’ types.

I place a mild full-support assumption on bidders’ beliefs over their rivals’ types. By using

the full-support assumption, I show that if a bidder believes that her rivals play undominated

strategies, then truthful reporting is her unique undominated best reply. The bidder does

not overreport her budget because she believes that there is a positive probability of paying

an amount that exceeds her actual budget if she overreports. As a robustness check, I show

that we obtain similar results when we relax the assumption that bidders have hard budgets.

In particular, I consider the case where bidders have continuous utility functions and get high

(but finite) disutility from spending an amount that exceeds their budget.

The assumption of full-support beliefs is general enough to nest cases where bidder types

2Bhattacharya et al. also suggest that the auctioneer can use lotteries to elicit information on private
budgets. However, such payment schemes are rarely seen in practice and lead to violations of bidders’ ex-post
individual rationality.
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are i.i.d., correlated, or do not satisfy a common prior assumption. The assumption is similar

to the full-support assumption used by Ausubel (2004) in his paper defining the clinching

auction. There are no restrictions on bidders’ higher-order beliefs. Thus, the proxy clinching

auction is detail-free, and robust in the sense of Wilson (1987).

The second di↵erence from the prior literature is that I use a weaker solution concept.

DLN only consider mechanisms that are dominant strategy implementable. I do not claim

that bidders have a dominant strategy to report their types’ truthfully in the proxy clinching

auction. Instead, I show that underreporting values and/or overreporting budgets is weakly

dominated, and truthful reporting is the prediction of two rounds of iterative elimination.

The rest of the paper proceeds as follows. Section 2 formalizes the auction setting,

describes the proxy clinching auction, and lists some basic properties of the mechanism.

Section 3 provides a motivating example. Section 4 characterizes bid behavior in the auction.

Section 5 discusses e�ciency. Section 6 considers two simple extensions. Section 7 concludes.

2 Model

2.1 Payo↵ Setting

The setting that I study is closely related to prior work studying e�cient auction design with

budgets.3 My model description closely follows DLN. I later discuss how my results extend

to the sale of an indivisible good.

A seller owns a divisible good that is in net supply one. There are N bidders, where

bidder i has value vi for each unit she wins, and budget bi. I call ✓i = (vi, bi) bidder i’s payo↵

type and assume that ✓i 2 ⇥, where ⇥ := {✓ 2 [0, 1]2|0  b  v  1}.4 Thus, if vi = bi, then

bidder i’s willingness to pay for one unit of the good equals her ability to pay. If vi > bi, then

bidder i faces a binding budget constraint. For ease of notation, I say ui(x, p) is the utility

of bidder i with payo↵ type ✓i, when she wins x 2 [0, 1] units and pays p, where

ui(x,�p) =

8
<

:
vix� p if p  bi,

�1 if p > bi.

Bidder i’s payo↵ type ✓i is private information.

An outcome describes payments and the allocation of the good.

3See Borgs et al. (2005); DLN; and Hafalir, Ravi, and Sayedi (2012).
4The setting is isomorphic to one where ⇥ := {[v, v]2|0  v  b  v  v < 1}. We assume [v, v] = [0, 1]

for simplicity. We could also allow for bi > vi; but such bidders have the same incentives as a bidder with
bi = vi.
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Definition 1. (Outcomes)

A (feasible) outcome (x, p) 2 [0, 1]N ⇥ RN is a vector of allocated quantities x1, . . . , xN

and a vector of payments p1, . . . , pN with the property that
PN

i=1 xi  1.

The proxy clinching auction implements feasible outcomes that are (ex-post) individually

rational, satisfy weak budget balance, and are Pareto e�cient. An outcome is individually

rational if all bidders receive non-negative payo↵s.

Definition 2. (Individual rationality)

An outcome (x, p) 2 R2N
+ is individually rational if ui(xi, pi) � 0 8i = 1, . . . , N .

Like DLN, I am interested in studying the implementation of outcomes that satisfy weak

budget balance. DLN refer to this as a no positive transfers condition. Weak budget balance

is an individual rationality constraint on the auctioneer, and it avoids trivializing the e�cient

implementation problem. If we do not impose a budget balance restriction, the auctioneer

can pay all bidders a large amount and then hold a second price auction amongst the (now

unconstrained) bidders. This is e�cient and dominant strategy implementable, but violates

budget balance.

Definition 3. (Weak budget balance)

An outcome (x, p) 2 R2N
+ satisfies the weak budget balance if

P
pi � 0.

Lastly, I study the implementation of (ex-post) Pareto e�cient outcomes. My definition

of Pareto e�ciency is the same as the definition used by DLN.

Definition 4. (Pareto e�ciency)

An outcome {(xi, pi)} is Pareto e�cient if there does not exist a di↵erent outcome {(x0
i, p

0
i)}

that makes all players better o↵, ui(x0
i,�p0i) � ui(xi,�pi) 8i, and gives weakly greater revenue

P
i p

0
i �

P
pi, where at least one of the inequalities holds with a strict inequality.

Bidder i has beliefs about the distribution of her rivals’ values and budgets. I assume

that bidder i’s first-order beliefs satisfy a full-support assumption. Roughly speaking, this

states that any realization of opponent payo↵ types is possible with some probability.

Assumption 1. (Full-support beliefs)

Bidder i has a full-support prior if for any ✓i 2 ⇥ and any subset A ⇢ ⇥N�1 where A has

strictly positive Lebesgue measure µ(A) > 0, then Fi(A|✓i) > 0.

I do not require that bidders share a common prior, nor do I require that it is commonly

known that all bidder’s beliefs satisfy this condition. The full-support assumption only

applies to bidders’ first-order beliefs. We could go further, and explicitly model bidder i’s
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higher-order beliefs, however, explicitly modeling higher-order beliefs can be intractable, and

is unnecessary for the purpose of this paper.

DLN do not explicitly model bidders’ beliefs. In their examples, bidders have an incentive

to overreport their budgets. I show that when bidders have full-support beliefs, bidders no

longer have the incentive to overreport budgets.

2.2 Description of the mechanism

The proxy clinching auction is a direct revelation mechanism where bidders report a payo↵

type (value and budget) to the auctioneer. Proxy bidders then play a clinching auction,

like that described by Ausubel (2004). I adapt Ausubel’s design to include for budgets by

allowing bidders’ demands to change depending upon the amount of money they spend. This

is similar to the clinching auction studied in DLN.

Thus, for bidder i, a pure strategy ai is a mapping from her type to her report, ai : ⇥ ! ⇥.

Given the profile of reported bidder types (✓1, . . . , ✓N) the proxy clinching auction determines

the number of units bidder i wins Qi : ⇥N ! [0, 1] and her payment Pi : ⇥N ! [0, 1].

If all bidders report zero demand, the good is split equally among all bidders. That is,

if the profile of reported types (✓1, . . . , ✓N) is such that bi = 0 8i, then Qi =
1
M Ivi>0 and

Pi = 0 8i, where M is the number of bidders who report strictly positive values. If only one

bidder i reports positive demand, then i wins all units for a price of zero. That is, if bi > 0,

and bj = 0 8j 6= i, then Qi = 1, Pi = 0 and Qj = Pj = 0 8j 6= i. In each case, we say the

auction terminates at time 0.

The non-trivial cases occur when at least two bidders report non-zero demands. That is,

there exists bidders i, j such that i 6= j and bi, bj > 0. The proxy clinching auction starts at

time 0. Time continuously increases until the auction terminates. The time t represents the

marginal price of additional units at time t.

More formally, let qi(t) 2 [0, 1] be the number of units clinched by bidder i at time t.

Similarly, pi(t) 2 R+ is the total amount that bidder i has committed to pay at time t. I

construct both qi and pi to be non-decreasing. At time t = 0, we set qi(0) = pi(0) = 0 8i.
For convenience, denote p�i (t) := limt0!t� pi(t0) and q�i (t) := limt0!t� qi(t0).

Bidders continuously report their demands for additional units as time (i.e. the marginal

price of additional units) increases. At time t, bidder i’s demand for additional units is

di(t) =

8
<

:
min{1� q�i (t),

bi�p�i (t)
t } if bi � p�i (t) and vi > t.

0 else

Bidder i demands the maximal number of additional units she can a↵ord if the marginal

6



price of additional units is below her value. She demands no additional units if the marginal

price of units exceeds her value, or if she has spent in excess of her budget. Let zi be the total

number of units bidder i demands at time t, including the units she has already clinched up

to time t, zi(t) = q�i (t) + di(t). I refer to zi as the total demand of bidder i. Thus, the total

demand of bidder i at time t includes the units bidder i has already clinched up to time t.

Each bidder i faces a residual demand curve si that is a function of other (proxy) bidders’

reported demands and the quantity they have clinched,

si(t) =

8
<

:
1�

P
j 6=i zj(t) if 1 �

P
j 6=i zj(t),

0 else.

If at time t, di(t0) > 0 8t0 < t, then

qi(t) = min{sup
tt0

si(t), di(t) + sup
t<t0

si(t)}.

That is, the supply curve determines the quantity that bidder i clinches, but we add the

additional restrictions that (1) the quantity bidder i clinches is non-decreasing, and that (2)

at time t, bidder i never clinches any more additional units than she demands. Thus, the

amount bidder i has clinched at time t can never exceed her total demand for units at time

t, zi(t).

If we reach some time t where di(t) = 0, then bidder i does not clinch any additional

units. In particular, if we define t⇤ = sup{t|di(t0) > 0 8t0  t} as the first time bidder i has

zero demand for additional units, then bidder i clinches no additional units following time

t⇤.

qi(t) = qi(t
⇤) if t > t⇤.

Therefore, having zero demand is equivalent to dropping out of the auction.

Bidder i pays t per unit for any additional units that she clinches at time t. Thus,

pi(t) = qi(t)t�
Z t

0

qi(s)ds.

The auction terminates at time ⌧ , where ⌧ is the first time the quantity of unclinched

units up to ⌧ (weakly) exceeds the demands for additional units, 1�
PN

i=1 q
�
i (t) �

PN
i=1 di(t).

Or equivalently, time ⌧ is the first time when all bidders’ total demands fall below the supply

of units, 1 �
PN

i=1 zi(t). The terminating time ⌧ is a function of the full profile of bidder

reports; I suppress notation for succinctness.

If 1 =
PN

i=1 zi(⌧) at time ⌧ , then each bidder wins Qi = zi(⌧) units and pays Pi =
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p�i (⌧) + ⌧di(⌧).

If 1 >
PN

i=1 zi(⌧), we use a rationing rule. Note that limt0!⌧�
PN

i=1 zi(t
0) � 1. If not,

the auction would terminate at a time earlier than ⌧. Let H := limt0!⌧�
PN

i=1 zi(t
0) and

L := 1 >
PN

i=1 zi(⌧). By construction, H � 1 � L. Thus, in this case where H > L and we

use the rationing rule, bidder i wins Qi units, where

Qi :=
1� L

H � L

✓
lim
t!⌧�

zi(t)

◆
+

H � 1

H � L
zi(⌧).

She pays Pi, where

Pi = p�i (⌧) + ⌧
�
Qi � q�i (⌧)

�
.

If zi is left continuous at ⌧ , the above expression simplifies to say that bidder i wins zi(⌧)

units and pays p�i (⌧) + ⌧di(⌧). When zi has a left discontinuity at ⌧ , bidder i wins between

limt!⌧� zi(t) and zi(⌧) units. The precise number of units is a weighted sum of the two

quantities. The weights are chosen to ensure feasibility. Bidder i pays ⌧ for any additional

units won at time ⌧ . By construction,
PN

i=1 Qi = 1.

2.3 Basic properties of the proxy clinching auction

Lemma 1 summarizes six properties that follow from the construction of the proxy-clinching

auction.

Lemma 1. (Properties of the proxy clinching auction)

Consider any profile of bidder reports (✓1, . . . , ✓N) in the proxy clinching auction. Suppose

that at least two bidders report positive demands bi, bj > 0, for some i, j 2 {1, . . . , N}. Then,

(1) ⌧ > 0.

(2) zi(t) is non-increasing in t over (0, ⌧).

(3) si is non-decreasing in t, and qi(t) = si(t) 8t 2 (0, ⌧).

(4) ⌧  1.

(5) If di(t) = 0 for some t < ⌧ , then Qi = Pi = 0.

(6) If t 2 (0, ⌧), then pi(t) < bi; and Pi 2 [0, bi] 8i.

The first point states that if at least two people state positive demands, then the proxy

clinching auction will not terminate at time 0. The second point states that a bidder’s total

demand for units weakly decreases as time increases. A direct implication of this point is that
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the number of units bidder i has clinched at time t is the number of units that are neither

clinched nor demanded by other bidders at time t. The fourth point states that the auction

terminates before the marginal price of additional units strictly exceeds all bidders’ values.

The fifth point states that a bidder who reports zero demand before the auction terminates

drops out of the auction. That is, she wins no units and pays nothing. The sixth point states

that the proxy clinching auction never requires bidders to make a payment that exceeds their

stated budget.

3 A Motivating Example

The purpose of this example is to illustrate the intuition for DLN’s impossibility result and

to motivate my main result: that the proxy clinching auction implements a Pareto e�cient

allocation when bidders have full-support beliefs.

Suppose that there are two bidders who compete in the proxy clinching auction. Bidder

1 has type ✓1 = (34 ,
2
3) and bidder 2 has type ✓2 = (1, 12). Thus, both bidders are budget

constrained. If both bidders report their types truthfully, then bidder 1 wins Q1 = .331 units

and she pays P1 = .201. Bidder 2 wins Q2 = .669 units and pays P2 =
1
2 .

However, conditional upon knowing her rival’s reported type, bidder 1 has a profitable

deviation. To see this, suppose that bidder 1 reports her type to be ✓̃1 = (34 ,
3
4) and bidder 2

reports her type truthfully. Then, Q1 =
1
3 , Q2 =

2
3 , P1 = .202, and P2 = .5. By overreporting

her budget, bidder 1 increases her payo↵ because

u1(
1

3
, 0.202) > u1(0.331, 0.201).

The incentive to overreport budgets follows from the construction of the clinching auction

and the presence of budgets. If bidder 1 reports her true (lower) budget, bidder 2 is able

to clinch units at an earlier time, when the price of units is low. This means, bidder 2’s

total demand for units is higher, because bidder 2 is able to clinch units at a lower price and

use less of her budget to acquire the same number of units. Because bidder 2 has a higher

total demand, this means that the residual demand left to bidder 1 is smaller. The residual

demand is the quantity that bidder 1 clinches. Thus, bidder 1 must wait longer to clinch the

same number of units. That is, bidder 1 pays a higher marginal price to acquire the same

number of units.

This is the motivation behind DLN’s impossibility theorem. They show that when bidders’

budgets are public, the clinching auction is the unique e�cient mechanism, but with private

budgets, bidders have an incentive to overreport their budget. Thus, there is no mechanism
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that is dominant strategy incentive compatible and Pareto e�cient when budgets are private.

In the above example, bidder 1 has an incentive to overreport because she knows that her

payment will not exceed her budget. Suppose instead, that bidder 2 reported that her type

was ( 8
11 ,

8
11). If bidder 1 still reports that her type is ( 34 ,

3
4), now neither bidder is (reportedly)

budget constrained. In this case, the outcome of the proxy clinching auction is equivalent to

the outcome of the second price auction. This means bidder 1 wins all units at a price of 8
11 .

However, bidder 1’s payment exceeds her (actual) budget of 2
3 . Therefore, bidder 1 would

have been better o↵ if she had instead truthfully reported her type.

Thus, a bidder may have incentives to overreport her budget if she knows her rivals’

bids. However, when her rivals’ bids are su�ciently dispersed, she does better by truthfully

reporting her budget. Thus, if the bidder believes that this is a positive probability that she

will pay in excess of her budget by overreporting her budget, she will have an endogenous

incentive to not overreport. I show that this is the case when a bidder has full-support beliefs,

and her rivals play undominated strategies. In order to show this, I first obtain bounds on

bid behavior by eliminating dominated strategies. As a robustness check, I show that we get

similar results even if a bidder does not have a hard budget.

4 Bid Behavior in the proxy-clinching auction

While DLN show that truthful reporting is not a dominant strategy in the proxy clinching

auction, we are still able to bound bid behavior by eliminating dominated strategies.

Proposition 1 shows that if bidder i has type ✓i = (vi, bi), then reporting (v, b) 2 ⇥ where

v > vi is weakly dominated by reporting (vi,min{vi, b}). That is, holding her reported budget

fixed, she earns a weakly lower payo↵ by overreporting her value. The intuition mirrors the

intuition for why bidders do not overreport values in the second price auction. If bidder i

reports value v > vi, then any additional units won after time vi decreases her payo↵. Bidder

i does better by reporting value vi and only winning the units she had clinched prior to time

vi, when the marginal price of units is less than her value.

Proposition 1. (Overreporting values is weakly dominated)

Overreporting values is a weakly dominated strategy. Specifically, if bidder i has type (vi, bi)

where bi > 0, then reporting type (v, b) 2 ⇥, where v > vi, is weakly dominated by reporting

(vi,min{vi, b}).

Proposition 1 gives an upper bound on bidders’ reported values. Similarly, Proposition

2 gives a lower bound on bidders’ reported budgets. Specifically, Proposition 2 shows that

simultaneously underreporting values and budgets is weakly dominated by truthful reporting.
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Proposition 2. (Underreporting both values and budgets is weakly dominated)

If bidder i has type (vi, bi), then reporting type (v, b) 2 ⇥, where v  vi and b < min{v, bi},
is weakly dominated by reporting (vi, bi).

The proof of Proposition 2 is broken into three Lemmas (2-4). Lemmas 2 and 3 compare

bidder i’s payo↵ when she reports (v, b) 2 ⇥ with her payo↵ when she reports (v,min{bi, v}),
where b < min{bi, v}. That is, fixing bidder i’s reported value, I compare her payo↵ from

reporting a higher budget with her payo↵ from reporting a lower budget.

The superscript ` denotes when bidder i reports value v and the lower budget b. The

superscript h denotes when bidder i reports value v and a higher budget equal to min{v, bi},
with b < min{v, bi}. Lemma 2 shows that given the reports of bidder j 6= i, bidder i clinches

more units at time t by reporting a higher budget than she does by reporting a lower budget.

Or equivalently, qhi (t) � q`i (t) .

Lemma 2. (Bidders clinch more objects by reporting a higher budget)

If t 2 (0,min{⌧ `, ⌧h), then qhi (t) � q`i (t).

The intuition for the Lemma is straightforward. At any time t, if bidder i reports the

higher budget, she clinches more units than she would if she were to report the lower budget.

By reporting the higher budget, bidder i has weakly greater demand for units. When she

reports the weakly greater demand, she clinches a weakly greater number of units at any

time t.

I use Lemma 2 to show that reporting (v,min{bi, v}) weakly dominates reporting (v, b)

for any b < min{v, bi}, when v  vi. In other words, simultaneously underreporting values

and budgets is weakly dominated by truthfully reporting your budget while keeping your

reported value unchanged.

To prove this, I use Lemma 2 to show that when bidder i reports a higher budget, she

wins a weakly greater number units, Qh
i � Q`

i . In addition, I show that bidder i pays

a lower price to win her first Q`
i units by reporting the higher budget. This is because

qhi (t) � q`i (t) 8t 2 (0,min{⌧ `, ⌧h). That is, bidder i wins her first Q`
i units at an earlier

time when she reports the high budget versus the low budget. Thus, her marginal price

of each unit is lower when she reports the higher budget. These results combine to show

that reporting (v,min{bi, v}) weakly dominates reporting (v, b) for any b < min{v, bi}, when
v  vi. This argument is proven formally in Lemma 3.

Lemma 3. a

If bidder i has type (vi, bi), then reporting (v, b) 2 ⇥, where v  vi and b < min{v, bi}, is
weakly dominated by bidding (v,min{v, bi}).
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I finish the proof of Proposition 2, by showing that reporting (v,min{v, bi}) is weakly

dominated by reporting (vi, bi) if v < vi. That is, bidder i gets a weakly greater payo↵

from truthful reporting than she does from any report where she underreports her value and

truthfully reports her budget (subject to the constraint that her reported budget does not

exceed her reported value). This is stated formally in Lemma 4.

The intuition behind the proof mirrors the standard argument used to show that under-

reporting values is weakly dominated in a second price auction. If she reports a value v less

than her true value vi, then at any time t 2 (v, vi) she demands no additional units. However,

bidder i increases her payo↵ by clinching additional units at a marginal price v < t < vi. In

addition, bidder i never exceeds her actual budget by reporting the higher value, as Pi  bi

under truthful reporting.

Lemma 4. a

If bidder i has type (vi, bi), then reporting (v,min{v, bi}), where v < vi, is weakly dominated

by bidding (vi, bi).

Lemmas 3 and 4 combine to prove Proposition 2. For any profile of bids and valuations

reported by bidders j 6= i, ✓�j, Lemma 3 states that reporting (v, b) 2 ⇥ where v  vi and

b < min{v, bi} gives a weakly lower payo↵ than reporting (v,min{v, bi}). In addition, Lemma

4 shows that reporting (v, bi) 2 ⇥, where v < vi, gives a weakly lower payo↵ than reporting

truthfully (vi, bi). Thus, truthful reporting gives a weakly greater payo↵ than reporting

(v, b) 6= (vi, bi) where v  vi and b  bi.

I describe U(✓i) ⇢ ⇥ as the set of all undominated strategies for bidder i. Thus far, our

results have shown that a 2 U(✓i) only if

a = (v, b) where (v, b) = (vi, bi) or v < vi and bi < b  v  vi. (1)

That is, overreporting values and underreporting budgets are weakly dominated. In addition,

if bidder i reports her budget truthfully, underreporting her value is also weakly dominated.

This is displayed in Figure 1.

When bidder i has full-support first-order beliefs, the bounds on bid behavior from equa-

tion (1) imply that truthful reporting is the unique best reply to any undominated strategy

profile of bidders j 6= i. If bidder i overreports her budget, full-support first-order beliefs

imply that there is a positive probability that her payment exceeds her budget. Specifically,

full-support first-order beliefs imply that if bidder i reports her type to be (v, b) where b > bi

12
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Figure 1: Undominated strategies

and bi < v  vi, then there is a positive probability that she pays Pi 2 (bi, v) if her opponents

play undominated strategies. This is proved in Proposition 3.

Proposition 3. (Truthful reporting is the unique undominated best reply)

Truthful reporting is the unique undominated best reply to any undominated strategy profile

of bidders j 6= i.

Proposition 3 shows that two rounds of iterative elimination of weakly dominated strate-

gies predict that bidders report their types truthfully. Thus, if bidders report their types

truthfully, we can say that if the auction ends at time ⌧, all bidders receive their total de-

mand for units at time ⌧ .

It is commonly known that iterative elimination of weakly dominated strategies can yield

multiple predictions. However, multiplicity in not an issue in this auction setting. Truthful

reporting is never eliminated under any iterative procedure as truthful reporting is a strict

best reply to truthful reporting. Insincere bidding is a best reply if and only if a bidder

believes her rivals play dominated strategies.

Corollary 1. (Properties of the allocation)

Given any profile of bidder types (✓1, . . . , ✓N), if bidder i reports her type truthfully, and the

auction terminates at time ⌧ , then

Qi =

8
>>><

>>>:

0 if ⌧ > vi

[0, limt!⌧� zi(⌧)] if ⌧ = vi

zi(⌧) if vi > ⌧

.

This follows directly from our prior results. If ⌧ > vi, then 9t 2 (0, ⌧) such that di(t) = 0.

13



Lemma 1 then implies that Qi = Pi = 0. If ⌧ < vi, then

zi(t) = q�i (t) + di(t) = min{1,
bi +

R ⌧

0 qi(s)ds

⌧
} 8t 2 [0, ⌧ ].

Since zi(⌧) = limt!⌧� zi(t) for all i, then Qi = zi(⌧) by construction. If ⌧ = vi, then

zi(⌧) 6= limt!⌧� zi(t) because di(t) is discontinuous at ⌧ . Thus, bidder i wins some amount

between 0 and limt!⌧� zi(t).

5 E�ciency

Proposition 3 shows that bidders truthfully report their types in the proxy clinching auction.

I use the first welfare theorem to show this gives a Pareto e�cient outcome.

Suppose that the outcome of the proxy clinching auction is such that bidder i wins Qi

units and pays Pi, and the auction terminates at time ⌧ . Note that Pi = Qi⌧ �
R ⌧

0 qi(s)ds.

I invoke the first welfare theorem because the outcome of the proxy clinching auction is a

Walrasian equilibrium of a two commodity endowment economy with N +1 agents. The two

commodities being traded are money and the divisible good. Each of the N + 1 agents has

endowments that are identical to the outcome of the proxy-clinching auction. Specifically,

bidder i is endowed with Qi units of the good and bi � Pi units of money. I assume i has

preferences

Ui(q,m) =

8
<

:
qvi +m if q 2 [0, 1]

vi +m if q > 1
.

Note that Ui(q, bi�Pi) = ui(q,�Pi). The auctioneer is agent 0. She is endowed with no units

of the good and
P

Pi units of money. Her preferences are U0(q,m) = m. I show that the

endowment economy has a Walrasian equilibrium with no trade, where the price of money is

1 and the price of the good is ⌧ . Thus, the initial endowment of goods is Pareto e�cient, as

is the outcome of the proxy clinching auction.

Proposition 4. (The proxy clinching auction is e�cient)

The proxy clinching auction implements a Pareto e�cient outcome.

The intuition behind the proof is straightforward. The auction terminates at time ⌧ .

Prior to time ⌧ , bidder i may have already clinched some units at a price lower than ⌧ . This

discount is equal to
R ⌧

0 qi(s)ds. Thus, it is as though bidder i has bi +
R ⌧

0 qi(s)ds to spend.

Bidder i’s Marshallian demand Mi for units of the good when she has wealth bi +
R ⌧

0 qi(s)ds

14



and the price of the good is ⌧ is

Mi =

8
>>><

>>>:

0 if ⌧ > vi

[0,min{1, bi+
R ⌧
0 qi(s)

⌧ }] if ⌧ = vi

min{1, bi+
R ⌧
0 qi(s)

⌧ } if ⌧ < vi

.

This is the quantity that bidder i wins in the proxy clinching auction. Thus, the initial

endowments are a Walrasian equilibrium, and the outcome of the proxy clinching auction is

a Walrasian equilibrium.

6 Extensions

6.1 Continuous Utility Function

The results in the prior sections leverage the assumption that bidders get infinite disutility

from exceeding their budget. Bidders do not overreport their budget because any overreport

gives a positive probability of obtaining infinite disutility. As a robustness check, I show that

we obtain similar results when bidders have continuous utility functions, and receive high

(but finite) marginal disutility from spending in excess of their budget.

Specifically, assume that bidder i, with type ✓i = (vi, bi), has preferences

u(x,�p, ✓i) =

8
<

:
xvi � p if p  bi

xvi � bi � '(p� bi) if p > bi
,

where ' > 1. A bidder’s marginal disutility of spending a dollar over her budget is ' > 1.

The implications of Propositions 1 and 2 hold when we assume bidders have continuous

utility functions (' is finite). That is, overreporting values and underreporting budgets are

weakly dominated.

To show that the implications of Proposition 2 hold, the proof is similar to the proof that

bidders do not overreport values in the second price auction. Holding a bidder’s reported

budget fixed, if a bidder overreports her value, there is a possibility that she wins additional

units at a price per unit that exceeds her value. This is avoided if she reports her value

truthfully.

The implications of Proposition 2 hold, because the proof of Proposition 2 is unchanged

when we assume ' is finite. This is because a bidder’s payment does not exceed her budget

if she reports her type truthfully or if she simultaneously underreports her value and budget.

Therefore, the set of undominated strategies is unchanged when ' is finite.
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Corollary 2. The report (v, b) 2 U(✓i) only if

(v, b) is such that (v, b) = (vi, bi) or bi < b  v  vi.

If bidder i reports the undominated strategy (v, b) 6= (vi, bi), then it is necessarily the

case that she overreports her budget. However, if (1) bidder i believes that her rivals’ play

undominated strategies, and (2) bidder i receives su�ciently large disutility from spending

in excess of her budget, then truthful reporting gives greater expected utility than reporting

(v, b). If bidder i overreports her budget, then full-support beliefs imply there is a positive

probability that she pays an amount that exceeds her actual budget. When ' is su�ciently

large, the disutility associated with exceeding the budget is greater than any possible gain that

could occur from misreporting. Thus, the expected payo↵ from reporting (v, b) is negative.

At the same time, truthful reporting guarantees that bidder i receives a non-negative payo↵.

Thus, the report (v, b) is eliminated in the second round of iterative elimination of weakly

dominated strategies, when ' is su�ciently large.

Proposition 5. Consider any report (v, b) 6= (vi, bi), where (v, b) 2 U(✓i). Suppose all

bidders play undominated strategies and bidder i has full-support first-order beliefs. If ↵ is

su�ciently large, the expected utility of truthful reporting is strictly greater than the expected

utility of reporting (v, b).

6.2 Indivisible goods

My results can also be used to study a setting where the auctioneer sells a single indivisible

good. The auctioneer uses the proxy clinching auction to sell probabilities of winning the

indivisible good as though they were shares of a divisible good in net supply one. Thus,

the proxy clinching auction determines each bidder’s probability of winning the good and

her payment. Bidders’ payments have an all-pay structure. That is, a bidder pays the same

amount whether or not she wins the good. Bidder payments are increasing in the bidder’s

probability of winning.

More formally, consider the proxy clinching auction for a divisible good where bidders

report types (✓i, ✓�i). Suppose that bidder i wins quantity Qi and pays Pi. Then, in the

indivisible good setting, if bidders report types (✓i, ✓�i) in the proxy clinching auction, bidder

i wins the good with probability Qi, and pays Pi, independent of whether she wins the good.

Thus, bidder i has expected utility ui, where

ui(Qi,Pi) =

8
<

:
viQi � Pi if Pi  bi,

�1 if Pi > bi.
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This is the same as the utility of a bidder with type (vi, bi) who wins Qi units and pays Pi

in the divisible good setting. Thus, a bidder’s incentive to report her type is the same as it

is in the proxy clinching auction for divisible goods.

Corollary 3. (Truthful reporting is the unique undominated best response)

If a bidder has full-support first-order beliefs, truthful reporting is the only strategy that sur-

vives two rounds of iterative deletion of weakly dominated strategies.

Thus, the proxy clinching auction can be solved using two rounds of iterative elimination.

I modify my earlier definition of an outcome to allow for indivisibility. Let A be the set of

all feasible assignments, where

A := {a|a 2 {0, 1}N and
NX

i=1

ai  1},

where ai = 1 if bidder i is given the object. A (deterministic) outcome � specifies both

transfers and a feasible assignment: � 2 A ⇥ RN . I define � := A ⇥ RN as the set of all

(deterministic) outcomes. Thus, a (probabilistic) outcome ↵ is an element of �(�).

An outcome ↵ is (ex-post) Pareto e�cient if, conditional on bidder types (✓1, . . . , ✓N),

there is no other outcome that gives weakly greater expected revenues and makes all bidders

weakly better o↵ in expectation. That is, conditional upon knowing all bidders’ private

information, we cannot increase one bidder’s expected utility without necessarily decreasing

revenue or lowering another bidder’s expected utility. Pareto e�ciency is defined formally

in Definition 5. This is the definition of ex-post Pareto e�ciency used by Holmstrom and

Myerson (1983). The notation E↵[vi, bi] denotes the expected utility of a bidder i with

valuation vi and budget bi in outcome ↵ 2 �(�). Similarly, E↵[P ] denotes the expected total

payment collected by the auctioneer.

Definition 5. (Pareto e�cient)

An outcome ↵ 2 �(�), is Pareto e�cient if @↵0 2 �(�) such that

E↵0 [vi, bi] � E↵[vi, bi] 8i = 1, . . . , N,

and

E↵0 [P ] � E↵[P ],

where at least one of the above inequalities holds strictly.

Corollary 4. (The proxy clinching auction is e�cient)

The outcome of the proxy clinching auction is Pareto e�cient.
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The proof of this Corollary follows from our prior results. Let A ⇢ �(�) be the set of all

outcomes where bidders pay a constant amount to the auctioneer, i.e. the set of all outcomes

with all-pay payment schemes. By construction the outcome of the proxy clinching auction

is an element of A.

Consider an outcome ↵ 2 �(�) where bidder i wins with probability qi and pays pi in

expectation, and the auctioneer is paid
PN

i=1 pi in expectation. Then, there is a corresponding

outcome ↵̃ 2 A, where bidder i wins with probability qi and pays pi with certainty. The

auctioneer collects equal expected payments under ↵ and ↵̃. Thus, outcome ↵̃ makes all

bidders weakly better o↵ and gives equal revenue. This holds because

E↵̃[vi, bi] = qivi � pi � E↵[vi, bi] if bi � pi,

and

E↵̃[vi, bi] = E↵[vi, bi] = �1 if bi < pi.

Thus, if outcome ↵̃ is Pareto dominated by some outcome � 2 �(�), then there exists a

corresponding outcome �̃ 2A that also Pareto dominates outcome ↵.

A direct implication of Proposition 4 is that for any profile of bidder types (✓1, . . . , ✓N) 2
⇥N , the outcome of the proxy clinching auction ⌘ is never Pareto dominated by some outcome

⌘̃ 2 A. Thus, @⌘̃ 2 A such that

E⌘̃[vi, bi] � E⌘[vi, bi], 8i

and

E⌘̃[P ] � E⌘[P ],

where at least one of the above holds strictly.

Because there does not exists a ⌘̃ 2 A that Pareto dominates ⌘, there is no outcome

� 2 �(�) that Pareto dominates ⌘. This holds because if there was an outcome � that did

Pareto dominate ⌘, there there would exist a corresponding �̃ 2 A that also Pareto dominates

⌘. However, since there is no �̃ 2 A that exists, it follows that the outcome of the proxy

clinching auction ⌘ is Pareto e�cient.

7 Conclusion

This paper studies the design of e�cient auctions when bidders have private values and

private budgets. When bidders have budgets, the VCG mechanism loses its desired incentive

and e�ciency properties. I show that a clinching auction played by proxy bidders can be
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considered a useful second-best solution to the e�cient auction design problem. The auction

is not dominant strategy implementable, but it can be solved using two rounds of iterative

elimination. This contrasts with prior work that shows that there is no dominant strategy

incentive compatible mechanism that yields an e�cient outcome when bidders have private

values and private budgets. I obtain my contrasting results, by (1) using the weaker solution

concept of iterative elimination, and (2) imposing a full-support assumption on bidders’ first-

order beliefs. The auction is e�cient, because the outcome can be supported as the Walrasian

equilibrium outcome of an endowment economy.

There are a number of related ideas that follow from this work. First, the model studied

here could be extended to a case where bidders do not have constant marginal values for

additional units. The intuition for not overreporting budgets should still hold with a full-

support belief on opponents’ types. Second, one could move from a private value setting,

to an interdependent value setting. This paper extends Ausubel’s (2004) clinching auction

to the setting where bidders have budgets. With interdependent values, we could similarly

adapt Perry and Reny’s (2005) ascending auction to include budget constraints. In addition,

it would be interesting the compare the performance of the clinching auction with other

mechanisms under alternative welfare criteria. For example, recent work by Che, Gale, and

Kim (2013) and Richter (2013) evaluate mechanisms in terms of utilitarian surplus, but

both consider settings with a continuum of bidders. Finally, it may be useful to study how

full-support beliefs and iterative elimination can be used to characterize behavior in other

mechanism design environments where budgets are a relevant feature.
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Appendix

Proof of Lemma 1, Part 1. By assumption, there exists at least two bidders i, j with

bi, bj > 0. Let � = min{bi, bj}.
At any time t < �, I show that zi(t) = 1. Note that, p�i (t)  tq�i (t)  t < bi where

the second inequality holds because qi(t) 2 [0, 1]. If q�i (t) = 1, this holds trivially, and if

q�i (t) < 1, then pi(t)  tqi(t)  t < bi and di(t) = 1 � q�i (t), because
bi�p�i (t)

t � bi�tq�i (t)
t >

1� q�i (t) = di(t). Thus, zi(t) = q�i (t) + di(t) = 1. Similarly, zj(t) = 1 8t < �.

Thus,
PN

i=1 zi(t) � 2 > 1 for all t < �. This implies the auction does not terminate until

at or after time �, and ⌧ � � > 0.

Part 2. I consider three cases. First, suppose that at time t, di(t) = 0. If di(t) = 0,

then p�i (t) � bi and/or t � vi. For all t0 > t, q�i (t
0) = q�i (t) by construction. Similarly,

p�i (t
0) = pi(t) 8t0 > t. Thus, di(t0) = 0 8t0 > t, and zi(t) = q�i (t) = q�i (t

0) = zi(t0).

Second, suppose that at time t, di(t) = 1� q�i (t) > 0. Then zi(t) = 1 � zi(t0) 8t 2 (t, ⌧),

since zi(t0)  1 8t0 2 (0, ⌧) by construction.

Finally, suppose that at time t, di(t) 2 (0, 1� q�i (t)). Thus, di(t) =
bi�p�i (t)

t .

First, I show that at any time t0 > t, p�i (t
0)  bi. I use proof by contradiction. If 9t0 such

that p�i (t
0) > bi, then, 9t̃ is such that t < t̃ =) p�i (t)  bi, and t > t̃ =) p�i (t) > bi,

because pi is non-decreasing. At time t̃, di(t̃)  bi�p�i (t̃)

t̃
. In addition, qi(t̃)  q�i (t̃)+di(t̃) =)

pi(t̃)  p�i (t̃) + t̃di(t̃)  bi. Recall, we define t⇤ as the last time where bidder i demands

additional units t⇤ = sup{t|di(t0) � 0 8t0  t}. Since di(t) = 0 8t > t̃, then t⇤  t̃. Thus

qi(t⇤) = qi(t0) 8t0 > t⇤ by construction. It follows that pi(t⇤) = pi(t0) 8t > t⇤, and pi(t⇤)  bi.

This contradicts the assumption that there exists a time t0 where pi(t0) > bi.

Thus, if t0 > t, then p�i (t
0) � t(q�i (t

0)� q�i (t)) + p�i (t). This implies,

di(t
0)  bi � p�i (t

0)

t0
 bi � p�i (t

0)

t0


bi �
�
t(q�i (t

0)� q�i (t)) + p�i (t)
�

t0

and,

di(t
0) 

bi �
�
t(q�i (t

0)� q�i (t)) + p�i (t)
�

t0
 bi � pi(t)

t
+ q�i (t)� q�i (t

0) = zi(t)� q�i (t
0).

Thus,

di(t
0)  zi(t)� q�i (t

0) =) di(t
0) + q�i (t

0) = zi(t
0)  zi(t).

Part 3. First, I show that qi(t)  si(t). Recall that si(t) = max{1 �
P

j 6=i zj(t), 0}. Since
zj(t) is non-increasing in t, for all j, then si(t) is non-decreasing. Thus, if di(t0) > 0 8t0 < t,
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then qi(t) = min{si(t), limt0!t� si(t0) + di(t)} and qi(t)  si(t). If di(t0) = 0 for some t0 < t,

then qi(t) = qi(t⇤), where t⇤ is defined as t⇤ = sup{t|di(t0) > 0 8t0 < t}. Thus, qi(t) = qi(t⇤) 
si(t⇤)  si(t) since si(t) is non-decreasing. Thus, qi(t)  si(t).

The remainder of the proof proceeds by contradiction. Suppose there exists a time t 2
(0, ⌧) such that qi(t) < si(t).

I consider two cases. First, suppose t is such that di(t0) > 0 8t0 < t, then qi(t) =

min{si(t), limt0!�t si(t0)+di(t)} =) q�i (t) = limt0!�t si(t0). Note that qi(t) = limt0!�t si(t0)+

di(t) < si(t) because qi(t) = min{si(t), limt0!�t si(t0) + di(t)} < si(t). Thus, qi(t) = zi(t) <

si(t). Since si(t) > qi(t) � 0, then si(t) = 1�
P

j 6=i zj(t) and

zi(t) < si(t) =)
NX

i=1

zi(t) < 1.

This contradicts the assumption that t 2 (0, ⌧), because the above condition requires that

the auction terminates by period t at the latest.

Second, suppose t is such that di(t0) = 0 for some t0 < t, then qi(t) = q�i (t) = qi(t0) and

pi(t) = pi(t0). Thus, di(t) = 0 and

zi(t) = qi(t) < si(t) =)
NX

i=1

zi(t) < 1.

This also contradicts the assumption that t 2 (0, ⌧).

Part 4. Suppose that ⌧ > 1. Then, for any time t 2 (1, ⌧),
PN

i=1 zi(t) > 1. Yet, di(t) = 0

8i,t > 1. Thus, qi(1) = zi(t) = q�i (t) 8t 2 (1, ⌧). Let M be the set of all bidders i such that

qi(1) > 0. If i 2 M , then

zi(t) = qi(t) = si(t) = 1�
X

j 6=i

zj(t) > 0, 8t 2 (1, ⌧).

Thus, 1 =
PN

i=1 zi(t), which contradicts that
PN

i=1 zi(t) > 1 8t 2 (1, ⌧).

Part 5. I prove this by contradiction. Suppose that di(t) = 0 for some t 2 (0, ⌧), yet Qi > 0.

Note that di(t) = 0 implies qi(t0) = qi(t), pi(t0) = pi(t), and di(t0) = di(t) = 0 8⌧ > t0 > t.

Thus, Qi > 0 =) Qi = zi(t0) = qi(t0) = qi(t) > 0 8t0 2 (t, ⌧). Thus,

zi(t
0) = qi(t

0) = 1�
X

j 6=i

zj(t
0) 8t0 2 (t, ⌧) =)

NX

i=1

zi(t
0) = 1 8t0 2 (t, ⌧).
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Thus, the auction terminates by time t0 or earlier (⌧  t0). This contradicts our assumption

that the auction ends at time ⌧ > t0.

Part 6. I prove this by contradiction. First, I show that pi(t) < bi 8t 2 (0, ⌧). Suppose that

t 2 (0, ⌧), yet pi(t) � bi for some i. Then di(t) = 0. We have already shown that if di(t) = 0

for some t < ⌧ , then Qi = Pi = 0. However, Pi � pi(t) � bi > 0, where the second inequality

follows because Pi � pi(t) 8t 2 (0, ⌧). Thus, 0 = Pi > 0 and we have a contradiction.

Next, I show Pi  bi. Note that p
�
i (t)+tdi(t)  bi 8t 2 (0, ⌧). This holds because p�i (t) =

q�i (t)t�
R t

0 qi(s)ds and di(t)  bi�p�i (t)
t . Thus p�i (t) + tdi(t)  bi � p�i (t) + p�i (t) = bi. Finally,

the construction of the proxy clinching auction implies, Pi  limt!�⌧ p
�
i (t) + tdi(t)  bi.

Proof of Proposition 1. I use an h superscript for variables when bidder i reports (v, b),

where v > vi; and an ` superscript when bidder i reports (vi,min{vi, b}).
For any t  vi, z`i (t) = zhi (t) = min{1, q�i (t) +

b�p�i (t)
t } = min{1, b+

R t
0 q`i (s)ds

t }. Thus,

shj (t) = s`j(t) 8t  vi. Therefore, if ⌧ ` < vi, then ⌧h = ⌧ ` and bidder i receives an equal payo↵

in each case, ui(Q`
i ,�P`

i ) = ui(Qh
i ,�Ph

i ).

If ⌧ ` = vi, then ⌧h � vi. First, suppose ⌧h = vi. Thus, Q`
i 2 [z`i (vi), limt!v�i

z`i (t)],

and Qh
i = zhi (vi) because z`i is left discontinuous at vi and zhi is left continuous at vi. In

addition, shj (t) = s`j(t)8t  vi implies that qhi (t) = q`i (t) 8t 2 (0, vi). Thus, Qh
i = zhi (vi) =

limt!v�i
zhi (vi) = limt!v�i

z`i (t) � Q`
i , and Ph

i = P`
i + vi(Qh

i � Q`
i). Thus, P`

i > bi only if

Ph
i > bi. If P`

i > bi, then ui(Q`
i ,�P`

i ) = ui(Qh
i ,�Ph

i ) = �1. If Ph
i > bi � P`

i , then

ui(Q`
i ,�P`

i ) > ui(Qh
i ,�Ph

i ) = �1. Finally, if bi � Ph
i � P`

i , then

ui(Qh
i ,�Ph

i ) = Qh
i vi �

�
P`

i + vi(Qh
i �Q`

i)
�
= Q`

ivi � P`
i = ui(Q`

i ,�P`
i ).

Next, suppose that ⌧ ` = vi < ⌧h. Since, shj (t) = s`j(t)8t  vi and Q`
i  s`j(vi), then

qhi (vi) � Q`
i and phi (vi) = P`

i + vi(Qh
i � Q`

i). In addition, Qh
i � qhi (vi) � Q`

i and Ph
i �

phi (vi) + vi(Qh
i � qhi (vi)) = P`

i + vi(Qh
i �Q`

i). Thus, Ph
i � P`

i . If P`
i > bi, then ui(Q`

i ,�P`
i ) =

ui(Qh
i ,�Ph

i ) = �1. If Ph
i > bi � P`

i , then ui(Q`
i ,�P`

i ) > ui(Qh
i ,�Ph

i ) = �1. Finally, if

bi � Ph
i � P`

i , then

ui(Qh
i ,�Ph

i )  Qh
i vi �

�
P`

i + vi(Qh
i �Q`

i)
�
= Q`

ivi � P`
i = ui(Q`

i ,�P`
i ).

Finally, suppose ⌧ `, ⌧h > vi. Then, 9t 2 (0, ⌧ `) such that d`i(t) = 0. Thus, Q`
i = P`

i = 0

by Lemma 1 and ui(Q`
i ,�P`

i ) = 0. Also, recall that q`i (t) = qhi (t) = 0 8t < vi. Thus,
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Ph
i = Qh

i ⌧
h �

R ⌧h

0 qhi (s)ds = Qh
i ⌧

h �
R ⌧h

vi
qhi (s)ds � Qh

i vi. Thus,

ui(Qh
i ,�Ph

i )  Qh
i vi � Ph

i  Qh
i vi �Qh

i vi = 0 = ui(Q`
i ,�P`

i ).

Proof of Lemma 2. I use the superscript h to denote variables when bidder i reports

(v, bh), and superscript ` for variables when bidder i reports type (v, b`), where bh > b`. I use

notation z�i(t) :=
P

j 6=i zj(t), and similarly, q�i(t) =
P

j 6=i qj(t).

The proof is by contradiction. Suppose there exists a time t 2 (0,min{⌧h, ⌧ `}) where

q`i (t) > qhi (t) � 0.

Then

qhi (t) = 1� z`�i(t) > max{0, 1� zh�i(t)} = q`i (t) =) zh�i(t) > z`�i(t).

Note that z`�i(t) < 1. Thus, z`j(t) < 1 8j 6= i. Then,

X

j 6=i

bj +
R t

0 q
h
j (s)ds

t
Ivj<t � zh�i(t) > z`�i(t) =

X

j 6=i

bj +
R t

0 q
`
j(s)ds

t
Ivj<t.

Thus,
X

j 6=i

Z t

0

qhj (s)Ivj<tds >
X

j 6=i

Z t

0

qhj (s)Ivj<tds.

Note, qhj (s) > 0 only if s < vj, by Lemma 1. Thus, we can rewrite the above condition as

Z t

0

�
qh�i(s)� q`�i(s)

�
ds > 0.

That is,

q`i (t)� qhi (t) > 0 =)
Z t

0

�
qh�i(s)� q`�i(s)

�
ds > 0.

Let t̃ be defined as the infimum of all times where the above integral condition holds.

t̃ := inf{t|
Z t

0

�
qh�i(s)� q`�i(s)

�
ds > 0}.

Thus, 8t  t̃, qhi (t) � q`i (t). Note also that
R t

0

�
qh�i(s)� q`�i(s)

�
ds is continuous in t. Thus,

R t̃

0

�
qh�i(s)� q`�i(s)

�
ds = 0. Combining the definition of t̃ with continuity, we get 8✏ > 0, 9� >

0, such that t0 2 (t̃, t̃ + �) =)
R t̃

0

�
qh�i(s)� q`�i(s)

�
ds = 0 <

R t0

0

�
qh�i(s)� q`�i(s)

�
ds < ✏.

This implies 9j such that,

qhj (t
0) > q`j(t

0) � 0.
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Let M be the set of all bidders j 6= i such that qhj (t
0) > q`j(t

0). Then, if j 2 M ,

qhj (t
0) = 1� zh�j(t

0) > max{0, 1� z`�j(t
0)} = q`j(t

0).

This implies, z`�j(t
0)� zh�j(t

0) > 0. Or equivalently,

z`�j(t
0)� zh�j(t

0) =
X

n 6=j

b`n +
R t0

0 q`n(s)ds

t0
Ivn<t0 �

X

n 6=j

bhn +
R t0

0 qhn(s)ds

t0
Ivn<t0 > 0.

=)
Z t0

0

�
q`�j(s)� qh�j(s)

�
ds > bh � b`.

Thus,
X

j2M

Z t0

0

�
q`�j(s)� qh�j(s)

�
> #M (bh � b`) .

We can rewrite the lefthand side as,

(#M � 1)
NX

j=1

Z t0

0

�
q`j(s)� qhj (s)

�
ds+

X

j /2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds.

Looking at the first term, 8✏ > 0,

(#M � 1)
NX

j=1

Z t0

0

�
q`j(s)� qhj (s)

�
ds  ✏

when t0 is su�ciently close to t̃, because
R t̃

0

�
q`�i(s)� qh�i(s)

�
= 0 and

R t̃

0

�
q`i (s)� qhi (s)

�
 0

(because qhi (t) � q`i (t) 8t  t̃). For the second term, I show

X

j /2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds < �#M ((bh � b`)� ✏) < 0.

This holds because when t0 is su�ciently close to t̃, then

Z t̃

0

�
q`�i(s)� qh�i(s)

�
= 0 ⇡

X

j /2M,i

Z t0

0

�
q`j(s)� qhj (s)

�
ds+

X

j2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds

Recalling that
P

j2M
R t0

0

�
q`�j(s)� qh�j(s)

�
> #M (bh � b`), we have that 8✏ > 0, t0 su�cient
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close to t̃, implies

X

j /2M,i

Z t0

0

�
q`j(s)� qhj (s)

�
ds < � (#M (bh � b`)� ✏)

In addition, recall
R t̃

0

�
q`i (s)� qhi (s)

�
 0 because qhi (t) � q`i (t) 8t  t̃. Thus, when t0 is

su�ciently close to t̃,

X

j /2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds < � (#M (bh � b`)� ✏) .

Thus when t0 is su�ciently close to t̃,

(#M � 1)
NX

j=1

Z t0

0

�
q`j(s)� qhj (s)

�
ds+

X

j /2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds < 0,

yet

(#M�1)
NX

j=1

Z t0

0

�
q`j(s)� qhj (s)

�
ds+

X

j /2M

Z t0

0

�
q`j(s)� qhj (s)

�
ds =

X

j2M

Z t0

0

�
q`�j(s)� qh�j(s)

�
,

and
X

j2M

Z t0

0

�
q`�j(s)� qh�j(s)

�
> #M (bh � b`) > 0.

Proof of Lemma 3. I use the superscript h to denote variables when bidder i reports

(v,min{v, bi}) 2 ⇥, and superscript ` for variables when bidder i reports type (v, b`) 2 ⇥. ,

We assume bh := min{v, bi} > b`. I consider three cases.

Case 1: ⌧ ` � ⌧h and ⌧h 6= v.

Note that zhi is continuous at t = ⌧h, as

zhi (t) =

8
<

:
min{1, bh+

R t
0 qhi (s)ds

t } if t < v

0 if t � v.

Thus, Qh
i = zhi (⌧

h) � z`i (⌧
h) � Q`

i where the first inequality holds because
R ⌧h

0 qhi (s)ds �
R ⌧h

0 q`i (s)ds and the second holds because z`i (t) is declining in t and ⌧ ` � ⌧h. Note that

P`
i = p`i(⌧

h) +
�
P`

i � p`i(⌧
h)
�
= ⌧hQ`

i �
Z ⌧h

0

q`i (s)ds�
Z ⌧`

⌧h
q`i (s)ds.
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Since ⌧ ` � ⌧h, then

P`
i � Q`

i⌧
h �

Z ⌧h

0

q`i (s)ds.

Thus, if ⌧h  vi,

ui(Qh
i ,�Ph

i )� ui(Q`
i ,�P`

i ) �
�
Qh

i �Q`
i

� �
vi � ⌧h

�
+

Z ⌧h

0

(qhi (s)� q`i (s))ds � 0.

If ⌧h > vi, then Qh
i = Q`

i = Ph
i = P`

i = 0 because dhi (t) = d`i(t) = 0 when t 2 (vi, ⌧h).

Case 2: ⌧ ` � ⌧h = v.

If ⌧ ` > v, then 9t such that d`i(t) = 0. Lemma 1 shows that this implies Q`
i = P`

i = 0. In

addition, Ph
i  ⌧hQh

i  viQh
i . Therefore,

ui(Qh
i ,�Ph

i ) = Qh
i vi � Ph

i � 0 = ui(Q`
i ,�P`

i ).

If ⌧h = ⌧ ` = v, then zni (t) is discontinuous at t = ⌧h = ⌧ ` := ⌧. For all t < ⌧ , we have

that zhi (t) � z`i (t) because zhi (t) = min{1, bi+
R t
0 qhi (s)ds

t } � min{1, b+
R t
0 q`i (s)ds

t } as b > bi and

qhi (t) � q`i (t). At time ⌧ , zhi (⌧) = q�h
i (⌧) � q�`

i (⌧). Thus, Qh
i � Q`

i by construction. In

addition,

Ph
i = ⌧Qh

i �
Z ⌧

0

qhi (s)ds  P`
i + ⌧(Qh

i �Q`
i) = ⌧Qh

i �
Z ⌧

0

q`i (s)ds,

since
R ⌧

0 qhi (s)ds �
R ⌧

0 q`i (s)ds. Thus, vi � v = ⌧ implies,

ui(Qh
i ,�Ph

i ) = Qh
i vi � Ph

i � Qh
i vi �

�
P`

i + vi
�
Qh

i �Q`
i

��
= ui(Q`

i ,P`
i ).

Case 3: ⌧h > ⌧ `.

If ⌧ ` > v, then 9t < ⌧ ` < ⌧h such that dhi (t) = d`i(t) = 0. Lemma 1 shows that this

implies Q`
i = Qh

i = P`
i = Ph

i = 0.

For the case where v � ⌧ `, note that zhi (t) � z`i (t) 8t 2 (0, ⌧ `]. Thus, at time ⌧ ` we have

that
NX

i=1

zhi (⌧
`) > 1 �

NX

i=1

z`i (⌧
`).

Recall, q�h
i (t) � q�`

i (t) � 8t 2 [0, ⌧ `]. This implies,

shi (⌧
`) � s`i(⌧

`) > 0.
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Thus,

qhi (⌧) = max{0, 1�
X

j 6=i

zhi (⌧)}.

Note that Q`
i  max{0, 1 �

P
j 6=i zj(⌧

`)}. Thus, qhi (⌧
`) � Q`

i . Recall that P`
i = ⌧ `Q`

i �R ⌧`

0 q`i (s)ds and phi (⌧
`) = ⌧ `qhi (⌧

`)�
R ⌧`

0 qhi (s)ds. First suppose that v0 � ⌧ `. Then,

ui(q
h
i (⌧

`),�phi (⌧
`))� ui(Q`

i ,�P`
i ) =

�
qhi (⌧

`)�Q`
i

�
(vi � ⌧ `) +

Z ⌧`

0

�
qhi (s)� q`i (s)

�
ds � 0.

Note that Qh
i � qhi (⌧

`) and Ph
i  phi (⌧

`) + v(Qh
i � qhi (⌧

`))  phi (⌧
`) + vi(Qh

i � qhi (⌧
`)). Thus,

ui(Qh
i ,�Ph

i ) � ui(q
h
i (⌧

`),�phi (⌧
`)) � ui(Q`

i ,�P`
i ).

Proof of Lemma 4. I use the superscript h to denote variables when bidder i reports

(vi, bi) 2 ⇥, and superscript ` for variables when bidder i reports type (v,min{bi, v}) 2 ⇥.

We assume v < vi. First, I show if ⌧ ` < vi, then ⌧h = ⌧ `. To do this, I show that

zhi (t) = z`i (t) 8t < v. If v < bi, then

z`i (t) = max{
v +

R t

0 q
`
i (s)ds

t
, 1} = 1 = max{

bi +
R t

0 q
h
i (s)ds

t
, 1} = zhi (t) if t < v.

In addition, if v � bi, then

z`i (t) = max{
bi +

R t

0 q
`
i (s)ds

t
, 1} if t < v.

This is the same function form as zhi (t) if t < v < vi. Thus there is no di↵erence in bidder i

reported preferences by reporting (v, bi) or (vi, bi) when the time is t < v. Thus,

NX

j=1

zhj (t) =
NX

j=1

z`j(t) if t < v.

This implies, ⌧h = ⌧ ` = inf{t :
PN

j=1 z
h
j (t)  1}.

Next, I show that, ⌧ ` � v =) ⌧h � v. This is because zhj (t) = z`j(t) 8j = 1, . . . , N and

t < v. Thus, ⌧ ` � v =)
PN

i=1 z
h
i (t) =

PN
i=1 z

`
i (t) > 1 8t < v. Or equivalently ⌧h � v.

This allows me to break the remainder of the proof into three cases.

Case 1 ⌧ ` < v. There is no di↵erence in the outcome of the auction prior to time v

because, zhi (t) = z`i (t) 8t < v. Since the auction terminates at time ⌧ ` < v under either

report, then Qh
i = Q`

i and Ph
i = P`

i .
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Case 2 ⌧ ` = v, ⌧h  vi. When bidder i reports the lower valuation, z`i (t) is discontinuous

at ⌧ `. Thus, she wins Q`
i 2 [z`i (⌧

`), limt!�⌧` z
`
i (t)] units and pays P`

i = Qi⌧
` �

R ⌧`

0 q`i (s)ds =

P`
i = Qi⌧

` �
R ⌧`

0 qhi (s)ds, where the final equality holds as qhi (s) = q`i (s) 8s  ⌧ `.

If ⌧h = ⌧ ` = v, then Qh
i = zhi (v), because zhi is continuous at v. Thus, Qh

i � Q`
i

because zhi (t) = limt!�v z
h
i (t) = limt!�v z

`
i (t) � Q`

i where the final inequality follows from

the construction of the mechanism. In addition Ph
i = P`

i + v(Qh
i �Q`

i) < P`
i + vi(Qh

i �Q`
i).

If ⌧h > ⌧ ` = v, then I first show qhi (⌧
`) � Q`

i . This holds because at time ⌧ ` we have that

NX

i=1

zhi (⌧
`) > 1 �

NX

i=1

z`i (⌧
`).

Recall, zhi (t) = z`i (t) 8t 2 [0, ⌧ `]. This implies,

qhi (⌧
`) = shi (⌧

`) = s`i(⌧
`) > 0.

Note that Q`
i  s`i(⌧

`) = max{0, 1�
P

j 6=i zj(⌧
`)}. Thus,

Q`
i  s`i(⌧

`) = shi (⌧
`) = qhi (⌧

`).

This implies Qh
i � qhi (⌧

`) � Q`
i , and

Ph
i  P`

i + v(qhi (⌧
`)�Qh

i ) + ⌧h(Qh
i � qhi (⌧

`))  P`
i + vi(Qh

i �Q`
i).

Thus, when ⌧ ` = v, ⌧h  vi, then Qh
i � Q`

i , and

Ph
i  P`

i + vi(Qh
i �Q`

i).

Note also that Ph
i ,P`

i  bi by Lemma 1. Thus,

ui(Qh
i ,�Ph

i ) = Qh
i vi � Ph

i � Q`
ivi � P`

i = ui(Q`
i ,�P`

i ).

Case 3. ⌧ ` > vi. Since ⌧ ` > v, 9t 2 (0, ⌧ `) such that d`i(t) = 0. Lemma 1 then implies

that Q`
i = P`

i = 0. If bidder i reports the high type, then she wins Qh
i units and pays

Ph
i  Qh

i vi, where the inequality follows from the construction of the auction. Since Lemma

1 implies Ph
i  bi, then

ui(Qh
i ,�Ph

i ) � 0 = ui(Q`
i ,�P`

i ).

Proof of Proposition 3. We assume bidder i’s opponents play undominated strategies.

That is bidders j 6= i play strategy profile a�i = (a1 . . . , ai�1, ai+1, . . . , aN), where aj : ⇥ !
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�(⇥), and (v, b) 2 supp (aj(✓j)) implies 0  bj  b  v  vj  1.

Let U(✓i) be the set of undominated reports conditional on having type ✓i. Our prior

results show that (v, b) 2 U(✓i) only if either 0  bi < b  v  vi  1, or bi = b and v = vi. I

want to show that

(vi, bi) 2 arg max
(v,b)2U(✓i)

EFi,a�i (Ui(Qi,�Pi)|✓i) ,

and if (v0, b0) 2 U(✓i) and (v0, b0) 6= (vi, bi), then

(v0, b0) /2 arg max
(v,b)2U(✓i)

EFi,a�i (Ui(Qi,�Pi)|✓i) .

First, note that the payo↵ from truthful reporting is non-negative. If bidder i reports her

type truthfully, Pi  bi and Pi  Qivi. Thus

max
(v,b)2U(✓i)

EFi,a�i (Ui(Qi,�Pi)|✓i) � 0 8Fi.

Second, note that for any realization of the proxy-clinching auction, bidder i’s utility is

bounded by vi  1 for any report (v, b). This is because Qivi  1 and Pi � 0.

If bidder i reports (v, b) 6= (vi, bi), then (v, b) 2 U(✓i) =) 0  bi < b  v  vi  1.

Let T�i = {✓�i|b > maxj 6=i vj and 9j s.t. bj > bi}. Note that this set has positive measure,

µ(T�i) > 0. Full-support beliefs imply that, bidder i believes there is a positive probability

that ✓�i 2 T�i. That is, Fi(T�i|✓i) > 0. If ✓�i 2 T�i, then a�i(✓�i) is such that all reported

values v0j have min{bj, vj}  v0j  maxj 6=i vj < �.

Thus,
P

j 6=i zj(bi + ✏) � 1 where ✏ > 0 is su�ciently small, because 9j with type ✓j such

that vj, bj > bi and zj(bi + ✏) = 1. Thus ⌧ > bi + ✏, and qi(bi + ✏) = 0. Yet, ⌧  maxj 6=i vj,

because if ⌧ > maxj 6=i vj, then 9 t 2 (maxj 6=i vj, ⌧) s.t.
P

j 6=i zj(t) = 0. Since zi(t) = 1 8t 
⌧  maxj 6=i vj, then Qi = 1. In addition qi(t) = 0 when t = bi + ✏. Thus Pi > bi + ✏.

Thus bidder i will receive a payo↵ �1 payo↵ if she reports (v, b) and ✓�i 2 T�i. Since this

occurs with positive probability and the payo↵ from participating in the auction is bounded at

one, we find that bidder i receives a negative expected payo↵ from reporting (v, b) 6= (vi, bi).

Thus reporting (v, b) is never a best reply, and reporting (vi, bi) gives a greater expected

payo↵ than any undominated strategy and is a unique best reply.

Proof of Proposition 4. Consider an endowment economy with two commodities and

N + 1 agents. The two commodities are the good and money. Agent 0 (the auctioneer) has

utility over units of the commodity q and money m,

U0(q,m) = m.

Agent 0 is endowed with 0 units of the commodity and
P

Pi units of money.
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Agent i 2 1, . . . , N has preferences

Ui(q,m) =

8
<

:
vi +m� bi if q > 1,

qvi +m� bi if q 2 [0, 1]
.

Agent i is endowed with Qi units of the good and bi � Pi units of money.

This endowment economy has a Walrasian equilibrium where agents do not trade and the

market clearing prices are ⌧ for the good and 1 for money.

To show this, we must find each agent’s Marshallian demands given her endowment when

the price of the good is ⌧ and the price of money is 1. This requires studying the outcome

of the proxy clinching auction when bidders report types truthfully.

Consider a bidder i with valuation vi < ⌧ . In the proxy clinching auction bidders reports

her type truthfully, the auction ends at time ⌧ . Thus, there exists a time t 2 (vi, ⌧) such that

di(t) = 0. Thus, Qi = Pi = 0 by Lemma 1. In the general equilibrium economy, this means

that bidder i is endowed with 0 units of the good and bi units of money. At prices ⌧ (for the

good) and 1 (for money), she consumes only money, and consumes bi units. Thus, she does

not trade any money.

Next, consider a bidder with valuation vi = ⌧ . In the proxy clinching auction bidder

i wins Qi units and pays Pi = p�i (⌧) + ⌧
�
Qi � q�i (⌧)

�
 bi. In the general equilibrium

economy, this means that bidder i is endowed with Qi units of the good and bi �Pi units of

money. When prices are ⌧ = vi and 1, she demands any combination of money m and the

good q such that
m+ ⌧q = (bi � Pi) + ⌧Qi.

Thus, she is indi↵erent between trading and not trading either commodity at these prices.

Finally, consider a bidder with valuation vi > ⌧ . In the proxy clinching auctions, where

all bidders report types truthfully, bidder i wins Qi = zi(⌧) = min{1, bi+
R ⌧
0 qi(s)ds

t } units, since

zi(t) is continuous at t = ⌧ . She pays Pi  bi. Note that Pi = ⌧Qi �
R ⌧

0 qi(s)ds. Thus,

Qi = min{1, bi+
R ⌧
0 qi(s)ds

⌧ } = min{1, ⌧Qi+bi�Pi
⌧ }.

In the general equilibrium economy, bidder i is endowed with Qi units and bi � Pi units

of money. When vi > ⌧ , she demands as much of the good that she can a↵ord, up to

a quantity of 1. Thus, she demands min{1, ⌧Qi+bi�Pi
⌧ } units of the good. Recalling that

Qi = min{1, ⌧Qi+bi�Pi
⌧ }, this means she demands Qi units of the good. Her remaining wealth

is spent to consume money. Thus, if Qi < 1, then Qi = min{1, bi+⌧Qi�Pi
⌧ } = bi+⌧Qi�Pi

⌧ =)
bi = Pi. That is, agent i demands no money, and spends all of her budget on consuming the

good. If Qi = 1, then agent i buys one unit of the good and, ⌧Qi+bi�Pi
⌧ � 1 =) bi � Pi,

and the bidder demands one unit of the good and bi � Pi units of money.

Thus, there is a Walrasian equilibrium where the price of money is 1 and the price of
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the good is ⌧ . The first welfare theorem implies that the Walrasian equilibrium is Pareto

e�cient. Thus, @{qi,mi}Ni=0 s.t.
PN

i=0 qi  1 and

Ui(Qi, bi � Pi) � Ui(qi,mi) 8i = 1, . . . , N

and
U0(0,

NX

i=1

Pi) =
X

Pi � U0(q0,m0) = m0.

Noting that u0(q,m) = U0(q,m) and ui(q,m) = Ui(q,m � bi) 8i = 1, . . . , N , we have that

the outcome of the proxy clinching is Pareto e�cient.

Proof of Corollary 2. First, I show that reporting (vi,min{b, vi}) weakly dominates

reporting (v, b), when v > vi. The proof is nearly identical to the proof of Proposition 1.

I use an h superscript for variables when bidder i reports (v, b), where v > vi; and

an ` superscript when bidder i reports (vi,min{b, vi}). For any t  vi, z`i (t) = zhi (t) =

min{1, q�i (t) +
b�p�i (t)

t } = min{1, b+
R t
0 q`i (s)ds

t }. Thus, shj (t) = s`j(t) 8t  vi. Therefore, if

⌧ ` < vi, then ⌧h = ⌧ ` and bidder i receives an equal payo↵ in each case, ui(Q`
i ,�P`

i ) =

ui(Qh
i ,�Ph

i ).

If ⌧ ` = vi, then ⌧h � vi. First, suppose ⌧h = vi. Thus, Q`
i 2 [z`i (vi), limt!v�i

z`i (t)],

and Qh
i = zhi (vi) because z`i is left discontinuous at vi and zhi is left continuous at vi. In

addition, shj (t) = s`j(t)8t  vi implies that qhi (t) = q`i (t) 8t 2 (0, vi). Thus, Qh
i = zhi (vi) =

limt!v�i
zhi (vi) = limt!v�i

z`i (t) � Q`
i , and Ph

i = P`
i + vi(Qh

i � Q`
i) =) Ph

i � P`
i . Thus, if

P`
i  bi, then

ui(Q`
i ,�P`

i ) = Q`
ivi � P`

i = Qh
i vi �

�
P`

i + vi(Qh
i �Q`

i)
�
� ui(Qh

i ,�Ph
i ).

If P`
i > bi then

ui(Q`
i ,�P`

i ) = Q`
ivi�bi�'(P`

i�bi) = Qh
i vi�bi�(Ph

i �P`
i )�'(P`

i�bi) � Qh
i vi�bi�'(Ph

i �bi),

and
ui(Q`

i ,�P`
i ) � Qh

i vi � bi � '(Ph
i � bi) = ui(Qh

i ,�Ph
i ).

Next, suppose that ⌧ ` = vi < ⌧h. Since, shj (t) = s`j(t)8t  vi and Q`
i  s`j(vi), then

qhi (vi) � Q`
i and phi (vi) = P`

i + vi(Qh
i � Q`

i). In addition, Qh
i � qhi (vi) � Q`

i and Ph
i �

phi (vi) + vi(Qh
i � qhi (vi)) = P`

i + vi(Qh
i �Q`

i). Thus, if P`
i  bi, then

ui(Q`
i ,�P`

i ) = Q`
ivi � P`

i � Qh
i vi �

�
P`

i + vi(Qh
i �Q`

i)
�
� ui(Qh

i ,�Ph
i ).

If P`
i > bi then

ui(Q`
i ,�P`

i ) = Q`
ivi�bi�'(P`

i�bi) � Qh
i vi�bi�(Ph

i �P`
i )�'(P`

i�bi) � Qh
i vi�bi�'(Ph

i �bi),
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and
ui(Q`

i ,�P`
i ) � Qh

i vi � bi � '(Ph
i � bi) = ui(Qh

i ,�Ph
i ).

Finally, suppose ⌧ `, ⌧h > vi. Then, 9t 2 (0, ⌧ `) such that d`i(t) = 0. Thus, Q`
i = P`

i = 0

by Lemma 1 and ui(Q`
i ,�P`

i ) = 0. Also, recall that q`i (t) = qhi (t) = 0 8t < vi. Thus,

Ph
i = Qh

i ⌧
h �

R ⌧h

0 qhi (s)ds = Qh
i ⌧

h �
R ⌧h

vi
qhi (s)ds � Qh

i vi. Thus,

ui(Qh
i ,�Ph

i )  Qh
i vi � Ph

i  Qh
i vi �Qh

i vi = 0 = ui(Q`
i ,�P`

i ).

Thus, reporting (vi, b) weakly dominates reporting (v,min{b, vi}), when v > vi. In addi-

tion, we can invoke Proposition 2, because the proof of Proposition 2 does not change if ' is

finite or infinity. Thus, if bidders have utility functions of the form

u(x,�p, ✓i) =

8
<

:
xv � p if p  bi

xv � bi � '(p� bi) if p > bi
,

then U(✓i) is such that a 2 U(✓i) only if

a = (v, b) where (v, b) = (vi, bi) or bi < b  v  vi.

Proof of Proposition 5. Consider any report (v, b) where 0  bi < b  v  vi. Let

T�i = {✓�i|b > maxj 6=i vj and 9j s.t. bj > bi}. Note that this set has positive measure,

µ(T�i) > 0. Full-support beliefs imply that bidder i believes there is a positive probability

that ✓�i 2 T�i. That is, Fi(T�i|✓i) > 0. If ✓�i 2 T�i, then a�i(✓�i) is such that all reported

values v0j have min{bj, vj}  v0j  maxj 6=i vj < �.

Thus,
P

j 6=i zj(bi + ✏) � 1 where ✏ > 0 is su�ciently small, because 9j with type ✓j such

that vj, bj > bi and zj(bi + ✏) = 1. Thus ⌧ > bi + ✏, and qi(bi + ✏) = 0. Yet, ⌧  maxj 6=i vj,

because if ⌧ > maxj 6=i vj, then 9 t 2 (maxj 6=i vj, ⌧) s.t.
P

j 6=i zj(t) = 0. Since zi(t) = 1 8t 
⌧  maxj 6=i vj, then Qi = 1. In addition qi(t) = 0 when t = bi + ✏. Thus Pi > bi + ✏. This

occurs with probability Fi(T�i|✓i).
Recall that bidder i’s utility is bounded. The highest payo↵ bidder i can receive is when

she wins 1 unit and pays 0. Thus, her utility is bounded by vi. Thus, bidder i’s expected

utility from reporting type (v, b) is bounded by

Fi(T�i|✓i) (vi � bi � '(✏)) + (1� Fi(T�i|✓i)) vi.

The above quantity is less than 0 when ' is su�ciently large. Thus, reporting (vi, bi) gives

strictly greater expected utility than reporting (v, b) where 0  bi < b  v  vi, when ' is

su�ciently large.
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