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Abstract

We study multi-unit auctions for homogenous goods in a private value setting where

bidders have non-quasilinear preferences. Several recent impossibility results study this

setting and find there is no mechanism that retains the Vickrey auction’s desired incen-

tive and efficiency properties without quasilinearity. While a fully efficient mechanism

is impossible, we show that any undominated outcome of the Vickrey auction has a

negligible inefficiency when bidder wealth effects are sufficiently small. In order to show

this, we first place bounds on undominated bid behavior in the Vickrey auction when

bidders have non-quasilinear preferences. We use (Marshallian) deadweight loss as our

inefficiency metric, and we derive a tight upper bound on the inefficiency associated

with the Vickrey auction in terms of the degree of bidder wealth effects. As wealth

effects diminish, the bound continuously approaches zero. Other common multi-unit

auction formats do not have this property, and their worst-case inefficiencies are higher

than that of the Vickrey auction.
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1 Introduction

1.1 Motivation

The Vickrey Clarke Groves (henceforth VCG) mechanism is cited as an achievement of

mechanism design because it implements an efficient resource allocation and also gives agents

a dominant strategy to truthfully reveal their private information. However, this positive

result crucially depends on the assumption that agents have quasilinear utility. Without

the quasilinearity restriction on preferences, impossibility results abound. Perhaps the most

notable is the Gibbard and Satterthwaite theorem, which gives conditions under which it is

impossible to implement any non-trivial social choice function in dominant strategies when

preferences are unrestricted.

More recent work has presented settings where Gibbard and Satterthwaite’s impossibil-

ity theorem extends to relatively coarser payoff type spaces.1 In particular, recent papers in

economics and computer science have studied multi-unit auctions when bidders have non-

quasilinear preferences. The emergence of this theoretical literature stems from frictions

that commonly shape incentives in important real-world auction design problems – budgets,

financial constraints, and bidder risk preferences are salient features of a bidders’ decision

problems in prominent multi-unit auctions for high value goods.2 Many papers have shown

that these violations of quasilinearity inhibit efficient implementation. For example, Dobzin-

ski et al. (2012) show that there is no multi-unit auction that is Pareto efficient when bid-

ders have private budgets and multi-units demands.3 Consequently, the VCG mechanism no

longer satisfies the properties that underpin its motivation – Pareto efficiency and dominant

strategy implementability – in multi-unit auction settings when we relax the assumption

that bidders have quasilinear preferences.

The main contribution of this paper is to quantify the inefficiency of the Vickrey auction,

as well as other multi-unit auctions, when bidders have non-quasilinear preferences. In other

words, we ask by how much does the Vickrey auction fall short of its efficiency objective

when bidders can have non-quasilinear preferences? We show the magnitude of inefficiency

associated with using the Vicrkey auction is scaled by the strength of bidders’ wealth effects.

Thus, while there is no auction that satisfies Vickrey’s desired properties, if bidder wealth

effects are sufficiently small, the inefficiency of any undominated Vickrey auction outcomes is

1Note that implementation problems become harder to solve, and more likely to yield impossibility
results, when the agents’ type spaces become finer.

2For example, Che and Gale (1998) and Dobzinski et al. (2012) note that budget constraints and imperfect
credit markets are important considerations for bidders in many important real-world auction settings.
Including these features violates the standard quasilinearity restriction.

3Kazumura and Serizawa (2016) show a similar result in a non-quasilinear setting where at least one
bidder has multi-unit demand. Baisa (2020) shows these impossibility result extend to settings where bidders
have non-quasilinear that do not satisfy single-crossing. See the related literature section for more detail.
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negligible. We consider an auction where bidders with non-quasilinear preferences compete

to win units of an indivisible homogeneous good.

We measure the inefficiency associated with an auction’s outcome as its (Marshallian)

deadweight loss. Essentially, our inefficiency metric is the consumer and producer surplus as-

sociated with a hypothetical perfectly competitive (and hence, efficient) resale market. This

method of quantifying the inefficiency of an auction is related to notions of price of anar-

chy and liquid welfare maximization used by computer scientists studying related problems.

However, neither price of anarchy nor liquid welfare are well-defined concepts in our settings

that nests quasilinearity and hard budgets as special cases. Furthermore, our worst-case

bounds are different from work on the price of anarchy because we do not assume bidders

best respond according to a standard game theoretic equilibrium concept. Instead, we make

a less restrictive assumption that bidders place undominated bids. Thus, our welfare bounds

are robust to assumptions on what is common knowledge. We calculate the ‘worst-case’ in-

efficiency as the maximal deadweight loss associated with an undominated auction outcome.

We first illustrate the relationship between the degree of bidder wealth effects and un-

dominated bid behavior in the Vickrey auction. While the Vickrey auction does not have

a dominant strategy equilibrium without quasilinearity, many bidding strategies are weakly

dominated and the set of undominated bidding strategies can be relatively small. When

a bidder has non-quasilinear preferences, the amount she is willing to pay for her nth unit

depends on the amount she paid in order to win her first n− 1 units. We get tighter bounds

on range of a bidder’s undominated bid curves in the Vickrey auction when the degree of

wealth effects – i.e. the degree that an bidder’s demand for additional units varies with her

wealth – is small. This is because when wealth effects are small, the amount a bidder wants

to pay for her later units is relatively invariant to the amount she paid to win the earlier

units. In the limiting quasilinear case, where bidders’ demands are invariant to their initial

wealth, truthful bidding is the only undominated strategy.

Our main result uses these bounds on undominated bid behavior to quantify the inef-

ficiency of the Vickrey auction. The upper bound is a function of the strength of bidder

wealth effects. When all bidders have preferences where wealth effects are relatively small –

like they do in the quasilinear benchmark – then the maximal amount of inefficiency possible

is relatively small. If wealth effects are more salient, as they could be in the hard budget

case of Dobzinski et al. (2012), for example, the worst case inefficiency is greater because

the range of undominated bids is greater. We show our upper bound on inefficiency is tight

by presenting an example of bidders with preferences and corresponding undominated bids

that create the maximal possibly deadweight loss.

We then compare the maximal inefficiency of the Vickrey auction to the Uniform-price
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and Discriminatory auctions. We show that the Vickrey auction’s inefficiency upper bound

is below that of the other two auctions. In both the Uniform-price and Discriminatory

auctions, the range of weakly undominated bid curves and the worst-case inefficiency do not

scale with the degree of wealth effects.

Finally, we extend the measure of inefficiency to cases where there is additional infor-

mation about bidder preferences or bids. First, we calculate the maximum inefficiency in

the Vickrey auction when bidders are known to have soft budget constraint preferences and

face a bounded interest rate. Second, we calculate the maximum inefficiency in the Vickrey

auction when bid curves are known and bidder wealth effects are bounded. In both cases,

the maximum inefficiency is less than the unconstrained maximum.

1.2 Related Literature

When agents have private values and quasilinear preferences, the VCG mechanism uniquely

implements an efficient outcome in dominant strategies (Holmström, 1979). Bikhchandani

et al. (2006) shows that we can implement any social choice function that satisfies weak

monotonicity in quasilinear private value settings. However, the Gibbard-Satterthwaite im-

possibility theorem (Gibbard, 1973; Satterthwaite, 1975) shows that these positive imple-

mentation results do not extend to private value settings without quasilinearity.

A recent literature has focused the scope of dominant strategy implementation in multi-

unit auctions where bidders have non-quasilinear preferences. These are settings where the

existence of monetary compensation restricts the set of feasible preferences, unlike in the

domain consider by the Gibbard-Satterthwaite impossibility theorem; and preferences are

non-quasilinear, unlike in Bikhchandani et al. (2006). The “hard-budget” case is a well-

studied special case where bidder preferences are described by a valuation and a budget.

Borgs et al. (2005) shows that it is impossible to implement a non-trivial social choice

function in this case. Dobzinski et al. (2012) show that efficient implementation requires

that budgets be commonly known. Further impossibility results by Lavi and May (2012)

and Goel et al. (2015) extend the impossibility of efficient implementation to cases where

bidders have public budgets and marginal values for additional units that are not constant.

There are papers in the economics literature that establish similar results, but do not

restrict to the hard budget case. For example, Morimoto and Serizawa (2015) show that the

minimum price Walrasian rule is the unique mechanism that retains the desired properties

of VCG when bidders have unit demands. Kazumura and Serizawa (2016) show that this

positive implementation result fails when we allow bidders to have multi-unit demands. Baisa

(2020) shows that the impossibility result extends to any multi-unit setting where bidder

preferences do not satisfy single-crossing. Ma et al. (2018) and Kazumura et al. (2020)

give further necessary and sufficient conditions on dominant strategy implementation of any

4



social choice function in non-quasilinear settings.

A consistent theme emerges from the aforementioned research on auctions when bidders

have non-quasilinear preferences: there is no mechanism that retains VCG’s desired incentive

and efficiency properties when bidders have multi-unit demands and bidder private informa-

tion is sufficiently rich. Given these impossibility results, a subsequent literature has sought

to understand what mechanisms are second-best, and what is the welfare loss associated with

using a second-best mechanism. As Dobzinski and Paes Leme (2014) write “We start from

the observation that a Pareto efficient solution is a binary notion: an allocation is either

Pareto efficient or not, and there is no sense of one allocation being “more Pareto efficient”

than the other. This is in contrast with efficiency in quasilinear environments where the

traditional welfare objective induces a total order on the the allocations.” Dobzinski and

Paes Leme then use this observation to motivate the use of an efficiency metric they call

liquid welfare for the case where bidders have hard budgets. Their metric of liquid welfare

in their paper is related to inefficiency metric developed in this paper. They construct a

dominant strategy implementable mechanism that generates a constant fraction of liquid

welfare. Relatedly, Syrgkanis and Tardos (2013), Azar et al. (2017), and Caragiannis and

Voudouris (2016) give bounds on the price of anarchy when budget constrained bidders place

bids in many auctions simultaneously.

The analysis in this paper differs from papers on the price of anarchy, because we do not

assume that bidders coordinate on placing equilibrium bids. Instead, we measure welfare by

characterizing the outcome that is maximally inefficient when bidders place undominated

strategies. Undominated implementation has been studied in a variety of mechanism design

settings. Börgers (1991) shows that there cases where there exist non-dictatorial decision

rules that are Pareto efficient when agents take undominated actions. Börgers and Smith

(2012) suggest using elimination of weakly dominated strategies as a means of ranking mech-

anisms and show cases where undominated mechanisms can implement outcomes that can

not be implemented through dominant strategy implementation. Yamashita (2015) simi-

larly studies worst-case scenarios, assuming only that agents take undominated actions. He

studies undominated implementation in a setting where agents have quasilinear utility and

a single-dimensional type. Like this paper, Chiesa et al. (2015) studies undominated bid

behavior in the Vickrey auction for indivisible homogeneous units. Also, their main result

is an asymptotic efficiency result that is similar in spirit to our main result. However, their

setting is quite different because they assume bidders have quasilinear preferences, but do

not know their actual value. Instead, they model players as having Knightian uncertainty

over their true value. Baisa (2017) considers undominated bid behavior when he studies a

mechanism used to sell a single indivisible good in a multi-unit auction. Finally, Babaioff
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et al. (2006) consider undominated implementation in a combinatorial auction setting where

bidders have quasilinear preferences.

2 Model

2.1 Bidder Preferences

Consider a seller with M ≥ 2 indivisible homogeneous units and bidders 1, . . . , N . Bidder

i’s preferences are described by utility function ui where

ui : {0, 1, . . . ,M} × R→ R.

Bidder i gets utility ui(q, t) when she owns q objects and has paid t. Without loss of

generality, we assume that ui(0, 0) = 0 ∀i ∈ {1, . . . , N}. We assume that ui(q, ·) is strictly

decreasing and continuous for all q ∈ {0, 1, . . . N}. Also, we assume free disposal, and hence

ui(q̃, t) ≥ ui(q, t) ∀i ∈ {1, . . . , N}, t ∈ R, and q̃, q ∈ {0, 1, . . . ,M} such that q̃ > q.

In addition, we assume that bidders have bounded demands. That is, ∃p > 0 such that

ui(q, t) > ui(q + 1, t + p) for any i ∈ {1, . . . , N}, t ∈ R, and q ∈ {0, 1, . . . ,M − 1}. It is

without loss of generality to assume that p = 1.

We make only two additional assumptions on bidder preferences. First, we assume weakly

declining demand for additional units. That is, if a bidder is unwilling to pay p for her qth

unit, then she is unwilling to pay p for her (q + 1)th unit. The assumption ensures that

bidders have (weakly) downward sloping (inverse) demand curves and generalizes the weakly

declining marginal values assumption imposed in the benchmark quasilinear setting.

A.1. (Weakly declining demand). For any t ∈ R, p ∈ R+, and q ∈ {1, . . . ,M − 1}, if

ui(q − 1, t) ≥ ui(q, t+ p),

then

ui(q, t) ≥ ui(q + 1, t+ p).

Second, we assume that bidders have weakly positive wealth effects. This means a bidder’s

demand does not decrease as her wealth increases. In words, suppose that bidder i chooses

between two bundles. The first bundle has q units and costs p total, and the second bundle

has q′ unit and costs p′ total, where q > q′. If bidder i weakly prefers the bundle with

more units, then weakly positive wealth effects states that she would also weakly prefer the

bundle with more units if her initial wealth increases. This is a multi-unit generalization of

the definition of an indivisible, normal good in Cook and Graham (1977).
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A.2. (Weakly positive wealth effects). Suppose q > q′ where q, q′ ∈ {0, 1, . . . ,M}. Bidder i

has weakly positive wealth effects:

ui(q, t+ p) ≥ ui(q
′, t+ p′) =⇒ ui(q, t

′ + p) ≥ ui(q
′, t′ + p′) ∀t > t′.

Let U denote the set of all utility functions ui that satisfy A.1 and A.2. We call U the

set of all positive wealth effects preferences.

We let d1i be the amount that bidder i is willing to pay for her first unit of the good.

Thus, d1i implicitly solves

0 = ui(1, d
1
i ).

We similarly define dqi (t) where dqi : R → R+ as bidder i’s willingness to pay for her qth

unit, conditional on winning her first q − 1 units for a cost of t ∈ R. More precisely, dqi (t) is

implicitly defined as solving

ui(q − 1, t) = ui(q, t+ dqi (t)),

for all q ∈ {2, . . . ,M} and t ∈ R. We analogously define sqi (t) as bidder i’s willingness to sell

her qth unit conditional on having paid t in total. Thus, a bidder’s willingness to sell her qth

unit sqi (t) is implicitly defined as solving

ui(q, t) = ui(q − 1, t− sqi (t)),

for all q ∈ {1, . . . ,M} and t ∈ R. Note that by construction,

sqi (t) = dqi (t− s
q
i (t)) ∀q ∈ {1, . . . ,M}, t ∈ R. (1)

Note also that our bounded demand assumption implies that dqi (t), s
q
i (t) ≤ 1, ∀i ∈ {1, . . . , N}, t ∈

R. In addition, A.1 and A.2 imply:

1. 1 ≥ dqi (t) ≥ dq+1
i (t) and sqi (t) ≥ sq+1

i (t) for all q ∈ {1, . . . ,M − 1} and t ∈ R.

2. dqi (t) and sqi (t) are continuous and weakly decreasing in t for all t ∈ R, q ∈ {1, . . . ,M}.

3. dqi (t
′)− dqi (t) ≤ t− t′∀t > t′ ∈ R

The first point is implied by bounded and declining demand. The second point is implied
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by non-negative wealth effects. The final point follows because

t > t′ =⇒ ui(q, t+ dqi (t)) = ui(q − 1, t) ≤ ui(q − 1, t′) = ui(q, t
′ + dqi (t

′))

=⇒ t+ dqi (t) ≥ t′ + dqi (t
′).

Intuitively, this says that if your initial wealth increases by t−t′ dollars, then your willingness

to pay for your qth unit cannot increase by more than the amount your wealth increased by.

Thus, this is an upper bound on the degree of wealth effects; i.e. the rate at which a bidder’s

willingness to pay for additional units can vary with respect to her wealth.

We typically study a subset of the set of all positive wealth effects preferences U . In

particular, we focus on a subset of U that we call U(k), where k ∈ [0, 1] is an upper bound

on the degree of bidder wealth effects. The parameter k represents the maximal amount

a bidder’s demand for a marginal unit can increase when her wealth increases by a dollar.

Intuitively, we can think of this parameter similarly to the marginal propensity to consume,

but for an indivisible unit setting.

Definition 2.1. (Wealth effects at most k). The set U(k), where k ∈ [0, 1], is the set of all

ui ∈ U such that

dqi (t
′)− dqi (t) ≤ k(t− t′) ∀q ∈ {1, . . . ,m}, t > t′.

If ui has wealth effects at most k, then k is the highest possible rate that bidder i’s willingness

to pay for a unit varies with wealth. By definition,

U(k) ⊂ U(k′) ⇐⇒ k < k′.

Note that the final point in the itemized list above shows us that U(1) = U . Note also that

when k is relatively close to zero, then bidders have relatively inelastic Engel curves – their

demand for additional units does not vary much with changes in the bidder’s wealth – and

when k is higher, then it is possible that bidders have relatively more elastic Engel curves.

The extreme case where we assume k = 0, includes all quasilinear preferences, as well as the

parallel domain studied by Ma et al. (2018). In this case, there are no wealth effects.

Example 2.1. (Quasilinear Preferences). Bidder i has quasilinear preferences where ui(q, t) =

vi(q)−t for some non-decreasing and weakly concave function vi : {0, 1, . . . ,M} → R+. Then

dqi (t) = sqi (t) = vi(q)− vi(q− 1) for all q ∈ {1, . . . ,M}, t ∈ R. This function is constant in t

and thus ui ∈ U(0).

Another instructive case is where bidders have budgets and can pay interest on bids in

excess of their budget. Hafalir et al. (2012) call this the soft budget case.
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Example 2.2. (Soft Budget Constraint). Bidder i has valuation function vi(q) where vi is

weakly increasing and weakly concave. Also, bidder i has budget wi ≥ 0 and pays interest

rate r ≥ 0 on the amount paid above budget,

ui(q, t) =

vi(q)− t if t < wi,

vi(q)− t− r(t− wi) if t ≥ wi.

Then, ui ∈ U(k) ⇐⇒ k ≥ r
1+r

. Note that when r = 0 this is the standard quasilinear

setting. The limiting case where r = ∞ is the hard budget case that has been well studied

by Dobzinski et al. (2012) and Pai and Vohra (2014), among many others.

2.2 Multi-unit auctions

We consider three well-studied auctions: the Vickrey auction, the Uniform-price auction, and

the Discriminatory auction. We especially focus on the Vickrey auction. All three auctions

have the same message space B where

B := {b ∈ Rm
+ | ∞ > b1 ≥ b2 ≥ · · · ≥ bm ≥ 0}.

Each auction assigns units to the M highest bids (out of the total M ×N submitted bids).

For concreteness, we assume that ties are broken in favor of the lower numbered bidder,

though this will not be essential to our analysis.

We follow Krishna (2009) to describe the payment rules in each auction. In the Vickrey

auction, the price a bidder pays for objects is determined by other bidders’ reported demands.

Specifically, a bidder’s payment is determined by the marginal price curve which is a residual

demand curve formed by other bidders’ reported demand curves.

Let c−i be the vector of competing bids faced by bidder i, ordered from highest to lowest.

Bidder i wins exactly q ∈ {0, 1, . . . ,M} units when she submits q bids that rank in the top M .

If bidder i wins q objects, she pays
∑q

j=1 c
−i
M+1−j. That is, bidder i faces an upward sloping

marginal price curve because c−iM+1−j is increasing in j. The marginal price of acquiring the

qth unit is the (M + 1− q)th highest bid made by i’s competitors.

In the Uniform-price auction, bidders again submit an M dimensional (non-increasing)

bid curve. All winning bidders pay the same price for all units won. The price is equal to

the highest losing bid, which is the M + 1st highest bid submitted. In the Discriminatory

auction, bidder i’s payment is sum of all of her winning bids.

We let y ∈ Y := {y ∈ {0, 1, . . . ,M}N |
∑N

i=1 yi = M} describe a feasible assignment of

units. An auction outcome (y, t1, . . . , tN) ∈ Y × RN describes both the feasible assignment

of units and payments for all bidders. We use the notation a(b, V ) ∈ Y × RN to describe
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the outcome of the Vickrey auction V when bids are b ∈ B. We similarly use the notation

a(b, UP ) and a(b,D) to describe the outcomes of the Uniform-price and Discriminatory

auctions, respectively.

We use the shorthand Vi(bi, b−i) to represent bidder i’s utility when she participates in the

Vickrey auction, has preferences ui ∈ U , bids bi ∈ B and faces competing bids b−i ∈ BN−1.

Similarly, we let UPi(bi, b−i) and Di(bi, b−i) represent bidder i’s payoffs in the Uniform-price

and Discriminatory auctions, respectively.

We assume bidders place bids that are weakly undominated. We define weak dominance

for the Vickrey auction below, and analogously extend the concept to study undominated

bid behavior in the other two auctions as well.

Definition 2.2. (Weakly Dominated Strategy). Bidding bi ∈ B is a weakly dominated

strategy for bidder i if there exists a b̃i ∈ B such that

Vi(b̃
i, b−i) ≥ Vi(b

i, b−i) ∀b−i ∈ BN−1,

and

Vi(b̃
i, b−i) > Vi(b

i, b−i) for some b−i ∈ BN−1.

We let BUD(ui, V ) be the set of all undominated bids for a bidder with preferences ui

in the Vickrey auction V . We use analogous notation for Uniform-price and Discriminatory

auctions as well.

2.3 A Measure of Inefficiency

Recent papers show that there is no mechanism that is efficient and dominant strategy

implementable when bidders have non-quasilinear preferences and a sufficiently rich type

space.4 For example, a corollary of Baisa (2020) is that is no such desirable mechanism when

the type space is U(k), for any k > 0. However, as Dobzinski and Paes Leme (2014) note,

Pareto efficiency is a binary concept. Thus, the aforementioned impossibility theorems do not

inform us about the magnitude of the inefficiency associated with the commonly used and/or

studied multi-unit auction formats. We develop bounds on the the magnitude of inefficiency,

which we measure by calculating the maximal (Marshallian) deadweight loss associated with

any undominated post auction outcome. Deadweight loss is defined as the hypothetical

producer and consumer surplus gained by moving from the post auction outcome to the

4Dobzinski et al. (2012); Lavi and May (2012); Kazumura and Serizawa (2016) and Baisa (2020) all
present impossibility results for efficient and dominant strategy implementable auctions in settings without
quasilinearity.
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outcome of a perfectly competitive resale market. Note that we are not assuming that

bidders have access to a resale market.

We begin with a numerical example and then formally define the notion of deadweight

loss in our setting.

Example 2.3. There are two bidders competing for three units. One bidder has quasilinear

preferences and the other has soft budget constraint preferences with interest rate r and

budget of one:

u1(q, t) = q − t,

u2(q, t) = q − t− rmax{0, t− 1}.

Bidder 1 has no wealth effects and bidder 2 has wealth effects at most k = r/(1 + r), i.e.

u2 ∈ U( r
1+r

). Consider an outcome is such that bidder 1 wins zero units and pays nothing,

and bidder 2 wins three units and pays three. In a hypothetical perfectly competitive resale

market, bidder 2 would sell some of her units to bidder 1. Bidder 1, the buyer in this

resale market, has demand equal to one for all three units because bidder 1 has quasilinear

preferences. We use the notation RD to describe her resale demand curve:

RD(1) = RD(2) = RD(3) = 1.

Bidder 2’s supply for the first unit in the resale market, which we will call RS(1), equals her

willingness to sell her third unit, which solves

u2(3, 3) = u2(2, 3−RS(1))⇒ RS(1) = 1/(1 + r).

Similarly, her supply for the second unit RS(2) and third unit RS(3) solve

u2(2, 3−RS(2)) = u2(1, 3− 2RS(2))⇒ RS(2) = 1/(1 + r),

u2(1, 3− 2RS(3)) = u2(0, 3− 3RS(3))⇒ RS(3) = 1.

In this case, the deadweight loss of the auction outcome is

DWL(a) =
3∑

j=1

max{RD(j)−RS(j), 0} = 2
r

1 + r
= 2k.

Formally, we define a bidder’s (inverse, Marshallian) resale demand and supply curves

and use these curves to calculate deadweight loss. The (inverse, Marshallian) resale demand

curve states the highest per unit price a bidder where a bidder would demand exact q ∈
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{1, . . . ,M − yi} additional units relative to her post auction outcome (yi, ti),

RDi(q, yi, ti) = max{p|ui(q + yi, ti + qp) ≥ ui(q̃ + yi, ti + q̃p), ∀q̃ ∈ {0, 1, . . . ,M − yi}}.

We similarly define the (inverse, Marshallian) resale supply curve as the lowest per-unit

price where a bidder would seek to sell exact q relative to her post auction outcome (yi, ti),

RSi(q, yi, ti) = min{p|ui(yi − q, ti − qp) ≥ ui(q̃ + yi, ti − q̃p),∀q̃ ∈ {0, 1, . . . , yi}}.

In introductory economics terms, deadweight loss is the region between the market de-

mand and market supply curves in our hypothetical perfectly competitive resale market.

Thus, if the post auction outcome is a = (y, t) ∈ Y × RN , the deadweight loss is

DWL(a) = max
{ri}

∑
i:ri>0

ri∑
r=1

RDi(r, a)−
∑
i:ri<0

−1∑
r=ri

RSi(−r, a)

s.t.
∑
i

ri = 0 and ri ∈ {−qi,−qi + 1, . . . ,m− qi}∀i.

The first term represents the market demand side of the resale market and the second term

represents the market supply. Notice that ri > 0 means bidder i buys units in the resale

market, and conversely, ri < 0 means bidder i sells units in the resale market.

We present efficiency bounds that are robust to both the precise realization of bidder

preferences and actions. In particular, we find the highest deadweight loss associated with

any undominated outcome of the given auction formats, as a function of the upper bound

on bidder wealth effects k. For the case of the Vickrey auction, the upper bound is formally

defined as

I(k, V ) = sup
u∈U(k),

b∈BUD(u,V )

DWL(a(b, V )).

We analogously define the inefficiency upper bound in the Uniform-price and Discrim-

inatory auctions. Note that the well known desirable properties of the Vickrey auction

in the quasilinear case shows us that I(0, V ) = 0. Or in other words, there is no dead-

weight loss in the undominated outcome of the Vickrey auction when we assume that bid-

ders have no wealth effects. Conversely, the aforementioned impossibility results for set-

tings without quasilinearity show us that k > 0 =⇒ I(k, V ) > 0. Also, observe that

I(k, a) ≤ M∀k ∈ [0, 1] and for any auction a because of our bounded demands assumption.

We confirm these results in our analysis.
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3 Vickrey Auction

3.1 Characterizing Undominated Bid Behavior

In this section, we derive the inefficiency upper bound on the Vickrey auction I(k, V ). We

show that the upper bound converges to zero when the degree of wealth effects k ∈ [0, 1] is

sufficiently small. While no auction perfectly satisfies the desired VCG-properties, we show

that any undominated outcome of the Vickrey auction has relatively little inefficiency, given

that bidders have sufficiently small wealth effects.

Our first result, Theorem 1, gives upper and lower bounds on the set of undominated

bids in the Vickrey auction for a bidder with preferences ui ∈ U(k). The lower bound on

undominated bids is the bidder’s (inverse, Marshallian) demand curve. A bidder’s (inverse)

demand curve for her qth unit is the highest price (per-unit) where a bidder where the bidder

demands exactly q ∈ {1, . . . ,M} units. Let LBi ∈ B be bidder i’s inverse demand curve,

which is defined implicitly as

LBq
i := dqi ((q − 1)LBq

i )∀q ∈ {1, . . . ,M}.

We show that upper bound on bidder i’s bid for her qth, which we call UBq
i , is her willingness

to pay for her qth unit conditional on having paid nothing to win her first q − 1 units,

UBq
i := dqi (0)∀q ∈ {1, . . . ,M}.

Note that by construction, UB1 = LB1 and UBq ≥ LBq∀q ∈ {1, . . . ,M}.

Theorem 3.1. In the Vickrey auction, the bid bi = (b1i , b
2
i , . . . , b

M
i ) is

1. undominated only if b1i = d1i and

bqi ∈ [LBq
i , UB

q
i ]∀q ∈ {2, . . . ,M}.

2. (Baisa, 2016). weakly dominated by b̃i where b̃i
q

= max{bqi , LB
q
i }∀q if bi is such that

bq
′

i < LBq′

i for some q′ ∈ {1, . . . ,M}.

3. weakly dominated by b̃i where b̃i
q

= min{bqi , UB
q
i }∀q if bi is such that bq

′

i > UBq′

i for

some q′ ∈ {1, . . . ,M}.

Proof. The proof is shown in the appendix.

The bounds on bid behavior described in Theorem 1 can be understood intuitively. Note

that in the Vickrey auction, by construction, the marginal price of a unit weakly exceeds the
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inframarginal price. We study two extreme cases to understand why LBi and UBi bound

bidder i’s undominated bid behavior.

In the first case, suppose that bidder i pays nothing to win each of her first q − 1 units,

and we want to determine what is her best response bid for her qth unit. Thus, we are

considering a special case where bidder i faces at most M − q competing bids that are not

equal to zero, and hence she wins her first q − 1 units for free. If bidder i paid nothing to

win her first q − 1 units, then her best response is to bid her willingness to pay for her qth

unit, conditional on having paid zero for the first q − 1 units, which equals dqi (0) = UBq
i .

However, in most cases, the gap between the marginal price bidder i pays to win her

qth unit and the inframarginal price she paid to win her first q − 1 units is not so large.

Furthermore, bidder i’s willingness to pay for her qth unit decreases when the inframarginal

price she paid to win her first q − 1 units increases, because she has positive wealth effects.

Taking this logic to the other extreme, we see that bidder i wants to bid the lower bound on

her undominated bids when she believes that the price she pays for her inframarginal units

is as large as the price she pays for her marginal units. More precisely, consider the a second

special case where all of bidder i’s rivals bid the same price p∗ for all units. Thus, bidder i

faces perfectly elastic marginal price curve, and the price she pays to win her marginal qth

unit equals the price she paid for her first q − 1 inframarginal units. In this case, bidder i

best responds if she wins exactly the number of units she demands when the price is p∗ per

unit. Thus, she wants her bid for her qth unit to equal the value of her inverse (Marshallian)

demand LBq
i , because she wants her qth bid to be a winning bid if and only if she demands

at least q units at price p∗.

Next, we relate the bounds on undominated bids in the Vickrey auction to the parameter

describing the upper bound on the strength of bidder’s wealth effects, k ∈ [0, 1].

Corollary 3.1. (Bound on misreporting). Suppose bidder i has wealth effects at most k

(i.e. ui ∈ U(k)). Then,

UBq
i − LB

q
i ≤ k(q − 1) ∀q ∈ {1, 2, . . . ,M}.

Proof. By construction of UBq
i and LBq

i , we have that

UBq
i − LB

q
i = dqi (0)− dqi ((q − 1)LBq

i ) ≤ k(q − 1)LBq
i ≤ k(q − 1),

where the penultimate inequality follows from the definition of wealth effects at most k, and

the final inequality holds because bounded demands imply that LBq
i ≤ 1.

There are two useful observations that follow from Corollary 3.1. First, note that the
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range of undominated bids is larger when wealth effects are larger. The intuition is that when

wealth effects are larger, a bidder’s willingness to pay for her qth unit is more responsive to

payment for the first q−1 units. Thus, the bidder best responds by placing a relatively high

bid if she thinks her rivals placed relatively low bids, and hence, she paid little to win her

first q − 1 units. Similarly, the bidder best responds by placing a lower bid when she thinks

her rivals placed relatively higher bids, and she must pay a lot to win her first q − 1 units.

In contrast, when wealth effects are near zero, such as when preferences are quasilinear, the

range of undominated bids is small because the precise amount a bidder paid to win her first

q − 1 units has little impact on determining her demand for her qth unit.

Second, we get tighter bounds on the range of undominated bids when looking at the

bids for earlier units. This is because wealth effects compound. In the Vickrey auction,

bidder i’s willingness to pay for her second unit depends on the amount she pays to win her

first unit. And similarly, her willingness to pay for her third unit depends on the amount

she pays to win her first two units. The amount bidder i pays to win her first unit must

be between her bid for her first unit and zero. The amount bidder i pays to win her first

two units is between 0 and twice the value of her second bid. The latter is a larger range

than the former. Thus, the range of possible values bidder i could have for her marginal

willingness to pay for another unit will be greater for later units because there is a larger

range of amounts she could pay for her first two units than there is for just her first unit.

Example 3.1. As in Example 2.3, there are two bidders competing for three units. One

bidder has quasilinear preferences and the other has soft budget constraint preferences with

interest rate r and budget of one:

u1(q, t) = (1− ε)q − t,

u2(q, t) = q − t− rmax{0, t− 1}.

Bidder 1’s willingness to pay for an additional unit is always dq1(t) = 1 − ε for all q and t

because she has quasilinear preferences. Therefore, the upper and lower bounds on her bids

are 1− ε:

LB1
1 = LB2

1 = LB3
1 = 1− ε,

UB1
1 = UB2

1 = UB3
1 = 1− ε.

Bidder 2’s upper bound for qth bid equals her willingness to pay for her qth unit conditional

on paying nothing for the first q − 1 units that she won. Therefore, her upper bound solves
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the following equations:

u2(0, 0) = u2(1, UB
1
2)⇒ UB1

2 = 1,

u2(1, 0) = u2(2, UB
2
2)⇒ UB2

2 = 1,

u2(2, 0) = u2(3, UB
3
2)⇒ UB3

2 = 1.

Bidder 2’s lower bound equals her (inverse) Marshallian demand curve, which can be solved

according to the following equations:

u2(0, 0) = u2(1, LB
1
2)⇒ LB1

2 = 1,

u2(1, LB
2
2) = u2(2, 2LB

2
2)⇒ LB2

2 =
1 + r

1 + 2r
,

u2(2, 2LB
3
2) = u2(3, 3LB

2
2)⇒ LB3

2 =
1

1 + r
.

Note that the difference between bidder 2’s upper and lower bounds approaches zero as the

interest rate r approaches zero. Bidder 1’s only undominated bid is b1 = (1− ε, 1− ε, 1− ε).
Bidder 2 has positive wealth effects and has many undominated bids. Suppose bidder 2 bids

her upper bound: b2 = (1, 1, 1). Then, if bidder 1 plays her dominant strategy, bidder 2

wins all three units and pays 3− 3ε. As ε→ 0, this allocation approaches allocation a from

Example 2.3, and the resulting deadweight loss is approximately 2r/(1 + r).

3.2 Inefficiency Bound

Our next step translates the bounds on undominated bids into bounds on the deadweight

loss associated with undominated Vickrey auction outcomes. Our main theorem quantifies

the worst case deadweight loss when bidders have wealth effects that are at most k (i.e.

ui ∈ U(k)∀i{1, . . . , N}). We find a tight upper bound on the worst case inefficiency.

Theorem 3.2. (Worst Case Inefficiency, Vickrey Auction). Suppose there are M units and

N bidders with preferences in u ∈ U(k)N . The maximal deadweight loss associated with any

undominated outcome in the Vickrey auction is

I(k, V ) =


∑M−1

j=1
(M−j)k
1−jk if k < 1/M,

(M − 1) otherwise.
(2)

Also, there exist (u1, u2, . . . , uN) ∈ U(k)N and undominated Vickrey auction bid curves

b1, b2, . . . , bN ∈ β such that the resulting deadweight loss associated with the post auction

outcome exactly equals I(k, V ).

Proof. The proof follows two steps. First, we fix an arbitrary N -touple of preferences and
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undominated bid curves and show that the value of the result post auction deadweight loss is

at most I(k, V ). This is shown in the appendix. In the second step, we consider a particular

N -touple of preferences in U(k)N and corresponding undominated bid curves. We verify that

the resulting deadweight loss from the post auction outcome equals I(k, V ) to demonstrate

that our bound is tight.

To see this second step, consider the case where bidders have the following preferences:

u1(q, t) =


1−(1−k)q−kt
k(1−k)q−1 if kM ≤ 1

1−(1−1/M)q−t/M
1/M(1−1/M)q−1 otherwise.

(3)

u2(q, t) = (1− ε)q − t, (4)

where ε is arbitrarily close to zero and k ∈ (0, 1). We may assume that all other bidders

have negligible demands for units of the auctioned unit. For our proof, it is sufficient to

show we can attain the maximal level of deadweight loss I(k, V ) in a two bidder setting. In

the appendix, we provide straightforward calculations proving that these preferences are in

U(k).

Theorem 3.1 shows us that the upper bound on bidder 1’s undominated bids equals 1

for all units. The undominated outcome that produces the most deadweight loss is when

bidder 1 bids the upper bound on her undominated bids. Bidder 2’s upper and lower bounds

equal 1 − ε for all units, because she has quasilinear preferences. Thus, bidder 1 bids 1 for

all M bids, and bidder 2 bids 1 − ε for all M bids. The auction outcome is that bidder 1

wins all M units and pays M(1 − ε) in total. Bidder 2 wins nothing and pays nothing. In

a hypothetical perfectly competitive resale market, bidder 2 would then have a demand of

1 − ε for each unit. Bidder 1 would sell M − 1 of the units that she won in the Vickrey

auction. Straightforward calculations show that bidder 1’s inverse supply for her jth unit

approaches max{0, (1−Mk)/(1− kj)} as ε→ 0. A final brute-force calculation shows that

the consumer and producer surplus of this hypothetical resale market exactly equals right

hand side of (2), which completes the proof. These calculations are in the appendix.

To understand the proof intuitively, recall that we are looking for the undominated

outcome of the Vickrey auction that generates the largest deadweight loss. We show that

this worst-case outcome occurs when one bidder (without loss of generality, bidder 1) bids

the upper bound on her undominated bids. In our example, bidder 1’s upper bound is to

bid 1 for each unit. Note that it is a best response for bidder 1 to bid her upper bound only

when her rival bids zero on zero for all units other than her first unit (and hence, bidder

1 pays 0 to win each of her first M − 1 units). However, in our example, bidder 2 has

quasilinear preferences and her marginal value for each unit is arbitrarily close to the upper
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bound on bidder 1’s bid curve. Therefore, in the undominated outcome, bidder 2 truthfully

bids her marginal value, which is 1− ε, for each unit. Consequently, bidder 1 wins M units,

but pays more than her willingness to pay for the last M − 1 units that she wins, because

her demand for later units is lower when she pays a relatively high price for early units, as

she does in this particular outcome. Thus, bidder 1 is willing to sell her final M − 1 units

at price below bidder 2’s willingness to pay for each unit. That gap between bidder 1’s

willingness to sell her final M −1 units and bidder 2’s willingness to pay for those additional

units is the missing surplus from the auction outcome that creates gainful trade in the resale

market. The gains from trade in the resale market are larger when bidder 1 has stronger

wealth effects, because in this case, bidder 1’s relatively high auction payment for her earlier

units reduces her willingness to sell her later units by a larger amount, and thus increases

the surplus available in the hypothetical resale market.

Notice that when wealth effects are sufficiently strong, then bidder 1’s willingness to sell

her final M − 1 units diminishes to an arbitrarily small amount. In this case, her resale

supply curve is near zero for the first M − 1 units that she sells. Consequently, the surplus

gained in the hypothetical competitive resale market is approximately bidder 2’s value for

the M−1 units that she would buy, which is (M−1)(1−ε). Conversely, when wealth effects

are sufficiently weak, we see that the maximal level of inefficiency becomes arbitrarily small.

4 Other Common Multi-unit Auctions

For comparison, we complete the same exercise for the Uniform-price and Discriminatory

auctions. In both, we again find bounds on undominated bid behavior and use these bounds

to find the maximal deadweight loss associated with any undominated auction outcome.

Unsurprisingly, the bounds on bid behavior in these two auctions are less tight relative to

the Vickrey auction. Thus, the inefficiency upper bound for both auctions strictly exceed

the bound we found in the Vickrey auction I(k, V ).

4.1 Uniform-price Auction

We first consider the Uniform-price auction. Recall, all winners pay a fixed price for each

unit that they win, and this price equal to the lowest winning bid. Prior literature shows

us that bidders do not overreport their demand curves, and instead often bid below their

marginal value, in the uniform price auction. The intuition for why reporting a bid above

a bidder’s inverse demand curve is dominated is the same as the well-known intuition for

why bidders underbid in equilibrium in the Uniform-price auction (see Ausubel et al. (2014),

for example). If a bidder wins some units, then it is possible that her first losing bid is the

M + 1st highest bid submitted in total, and thus her bid sets the clearing price. In this case,

the bidder benefits by underreporting her demand. However, a bidder can never benefit by
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submitting bids that are above her inverse demand curve. If submitting a bid above her if

inverse demand changed the auction outcome (relative to the case where her bids equal her

inverse demand curve), then she either increased the market clearing price and/or won more

units than she desired at the market clearing price. However, note that a bidder always best

responds by truthfully reporting her first bid, because bidders submit weakly decreasing bid

schedules, and thus, it is impossible for a bidder’s first bid to set the clearing price for any

units that she wins.

In the space below, we cite a result fromBaisa (2016) that gives an upper bound on

undominated bid behavior in the uniform-price auction, for our particular setting, where

bidders have non-quasilinear preferences.

Proposition 4.1. (Baisa, 2016). In the Uniform-price auction, the bid bi = (b1i , b
2
i , . . . , b

M
i )

is

1. undominated only if b1i = d1i and

bqi ∈ [0, LBq
i ]∀q ∈ {2, . . . ,M}.

2. weakly dominated by b̃i where b̃i
1

= LB1
i and b̃i

q
= min{bqi , LB

q
i }∀q > 1 if bi is such

that bq
′

i > LBq′

i for some q′ ∈ {1, . . . ,M}.

Unlike in the Vickrey auction, the bounds on undominated bid behavior do not depend

on our upper bound on the strength of bidder wealth effects. Therefore, the worst case

inefficiency is independent of the strength wealth effects.

Proposition 4.2. (Worst Case Inefficiency, Uniform-price Auction). Suppose there are M

units and N bidders with preferences in U(k). The worst case inefficiency is

I(k, UP ) = (M − 1)∀k ∈ [0, 1]

Furthermore, there exist u1, u2, . . . , uN ∈ U(k) and undominated Uniform auction bid curves

b1, b2, . . . , bN ∈ β such that the resulting resale market gains from trade are exactly I(k, UP ).

Proof. The proof is provided in the appendix.

The proof structure is similar to that of Theorem 3.2. First, we establish that (M − 1)

is an inefficiency upper bound. Then, example bid curves prove that this bound is tight.

For this auction, an example where the worst case inefficiency is realized when there are two

bidders, each with quasilinear preferences. One bidder has a marginal value of one for each

unit and the other has marginal value equal to ε for each unit. The first bidder bid zero for
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every unit after her first unit, and the second bidder just outbids bidder 1 for each of these

last M − 1 units. Thus, the second, low demand bidder wins all but one of the units, and

this yields a large surplus generating resale market. Moreover, since we present a quasilinear

example in which we achieved the worst-case bound, we know the bound is invariant to any

value of the the upper bound on wealth effects k.

4.2 Discriminatory Auction

Finally, we repeat the exercise for the Discriminatory auction, where payment from a winning

bid is equal to the bid itself. Following a similar intuition as the Uniform-price auction, there

is no overreporting in the Discriminatory auction.

The lower bound on undominated bid behavior is zero for all units, including the first. The

intuition is the same intuition for why any bid between a zero and a bidder’s willingness to

pay is an undominated in a first price auction. We formalize this in the following proposition:

Proposition 4.3. In the Discriminatory auction, the bid bi = (b1i , b
2
i , . . . , b

M
i ) is

1. undominated only if

bqi ∈ [0, LBq
i ]∀q ∈ {1, . . . ,M}.

2. weakly dominated by b̃i where b̃i
q

= min{bqi , LB
q
i }∀q if bi is such that bq

′

i > LBq′

i for

some q′ ∈ {1, . . . ,M}.

Proof. The first point follows from the second and the second point is shown in the appendix.

These bounds on undominated bid behavior yield the following worst case inefficiency.

Proposition 4.4. (Worst Case Inefficiency, Discrimanatory Auction). Suppose there are

M units and N bidders with preferences in U(k). The worst case inefficiency is

I(k,D) = M.

Furthermore, there exist u1, u2, . . . , uN ∈ U(k) and undominated Discriminatory auction bid

curves b1, b2, . . . , bN ∈ β such that the resulting resale market gains from trade are exactly

I(k,D).

Proof. The proof is provided in the appendix.

An example where undominated bidding yields the worst case inefficiency outcome occurs

can be seen with two bidders that have quasilinear preferences. The first bidder has a

marginal value of one for all M units, and the other bidder has marginal value ε for all M
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units. There is an undominated outcome where the first, high demand, bidder bids arbitrarily

close to zero for each unit; while the other, low demand bidder, bids only slightly higher. In

this case, the deadweight loss associated with the post auction outcome is arbitrarily close

to M .

5 Extensions

Our main results calculate the worst case inefficiency given minimal information about pref-

erences and strategies. However, we provide tighter bounds on the Vickrey auction’s ineffi-

ciency if we have additional information on bidder preferences (beyond simply noting that

bidders have preferences in U(k)) or if we observe actual bid data. In this subsection, we

present two cases where we can get a tighter bounds on the Vickrey auction’s inefficiency.

In the first case, we assume that bidders have quasilinear preferences, but also face a soft

budget constraint. In the second case, we show how to calculate the worst case inefficiency

after observing bids.

5.1 Soft Budget Constraint Preferences

Suppose that bidders have quasilinear preferences but face a soft budget constraint prefer-

ences as defined by Hafalir et al. (2012). That is, bidders are able to spend in excess of

their budget, but they must pay interest rate r on all spending above their budget. Thus,

their marginal utility of money is 1 + r whenever their spending exceeds their budget. Note

that the degree of wealth effects is thus r
1+r

. As the interest rate r approaches infinity, the

bidders have hard budget constraints and the degree of wealth effects approaches one.

For simplicity, we restrict attention to a two bidder case. The following proposition shows

us that our worst-case inefficiency of the Vickrey auction within the soft budget setting is

below the maximal inefficiency described in Theorem 3.2.

Proposition 5.1. (Worst Case Inefficiency, Vickrey Auction, Soft Budget Constraint Pref-

erences). Suppose there are M units and 2 bidders with soft budget constraint preferences

facing interest rate at most r, meaning wealth effects are at most k = r/(1 + r). The worst

case inefficiency is

I(k, V ) ∈ [k(M − 1),max{k(M − 1), k(M − 2)(2− k)}]. (5)

Proof. See appendix.

With some case checking, it is straightforward to show that the upper limit of (5) is always

smaller than (2)

The worst case inefficiency is achieved when two high valuation bidders compete. One of

the bidders is not budget constrained and has constant valuation 1− ε. The second bidder
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has a budget constraint starting at one. The first bidder bids her only dominant strategy,

her valuation of 1− ε. The second bidder falsely believes that she will not pay anything for

early units, and thus bids one for all units, winning them all. The second bidder is willing to

sell her units in the hypothetical resale market because she far exceeded her budget in the

Vickrey auction and needs liquidity to pay down her interest.

The worst case inefficiency in (5) smoothly increases with the interest rate. If bidders do

not face a positive interest rate, then the Vickrey auction efficiently allocates the units. In

contrast, as the interest rate grows, the auction inefficiency approaches the maximal value

of all but one unit M − 1.

5.2 Known Bid Curves

The other way in which there might be more available information is with respect to equilib-

rium strategies. For example, suppose that the realized equilibrium bid curves and allocation

in the Vickrey auction are known. A natural question is to evaluate the success of the auc-

tion outcome from an efficiency standpoint. In general, it is not possible to evaluate the

success of an allocation without knowledge about preferences. Therefore, one can calculate

the worst case inefficiency given observed bid curves and knowledge that wealth effects are

at most k.

For simplicity, consider a Vickrey auction with two bidders and two units. The following

proposition relates observed bid curves (b11, b
2
1) and (b12, b

2
2) to the maximum possible size of

a hypothetical resale market.

Proposition 5.2. (Worst Case Inefficiency, Vickrey Auction, Two Bidders, Two Units,

Known Bid Curves). Suppose there are 2 units and 2 bidders with preferences in U(k). The

equilibrium bid curve for bidder 1 is restricted to (b11, b
2
1) and the equilibrium bid curve for

bidder 2 is restricted to (b12, b
2
2), where 1 = b11 ≥ b12. The the worst case inefficiency is

I? ≤ max

{
b12 − b21 − kb22

1 + k
,
b21 − b22
1 + k

, 0

}
. (6)

Proof. See appendix.

The three terms over which the maximum is taken correspond to, respectively, resale

markets where bidder 1 sells one of her two goods goods, bidder 1 buys a second good, and

no trade occurs. At most one unit is traded in the resale market because the Vickrey auction

always allocates one unit efficiently.
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6 Conclusion

In this paper, we consider a multi-unit auction where bidders may have non-quasilinear

preferences. Many recent impossibility results show us that there is no mechanism that

retains VCG’s desired incentive and efficiency properties without quasilinearity. This paper

shows us that in non-quasilinear settings, the degree to which the Vickrey auction fails to

robustly meet its commonly cited objective depends on the degree of bidder wealth effects.

When the degree of wealth effects are sufficiently small, the Vickrey auction is arbitrarily

close to meeting the commonly cited efficiency and incentive properties, even though no

mechanism satisfies those properties precisely. Other multi-unit auctions do not preform as

well.

In order to make this conclusion, we develop a deadweight loss measure of the ineffi-

ciency and apply it to common multi-unit auctions. We derive a tight upper bound on this

inefficiency in the Vickrey auction as a function of bidder wealth effects. The worst case

inefficiency scales with the degree of bidder wealth effects. To explain this phenomenon, we

show that the range of undominated bids in the Vickrey auction increases with the degree

of bidder wealth effects. We extend the analysis to consider cases where bidders have soft

budget constraint preferences or where bid curves are known.
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A Appendix: Proofs

A.1 Proof of Theorem 3.1

It suffices to show that, in the Vickrey auction, the bid bi = (b1i , b
2
i , . . . , b

M
i ) is weakly

dominated by b̃i where b̃qi = min{bqi , UB
q
i }∀q if bi is such that bq

′

i > UBq′

i for some q′ ∈
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{1, . . . ,M}. First, we show Vi(b̃
i, b−i) ≥ Vi(b

i, b−i) for all b−i ∈ BN−1. Let x be the number

of units bidder i wins when she bids bi and x̃ be the number of units that bidder i wins when

she bids b̃i.

Case 1: Bidder i wins the same number of objects if when she bids bi or b̃i. Under

each bid curve, the bidder pays the same amount. This is because the marginal price of an

additional unit is based on other bidders’ bids. Thus, her payoff is the same.

Case 2: Bidder i wins more objects by bidding b̃i than bidding bi. Here we assume x̃ > x.

By the argument in Case 3 of Proposition 2 in Baisa (2016), b̃ij > bij ∀j ∈ {x + 1, . . . , x̃}.
Thus, by construction of b̃i, x = 0, x̃ = 1, and b̃i1 = d1i . Because b̃i wins a unit but bi does

not, it must be that bi1 < c−iM < b̃i1 = d1i and c−iM−1 > b̃i2. Bidder i pays c−iM when bidding b̃i.

Thus by the definition of d1i ,

Vi(b̃
i, b−i) = ui(1, c

−i
M ) ≥ ui(1, d

1
i ) = ui(0, 0) = Vi(b

i, b−i).

Case 3: Bidder i wins fewer objects by bidding b̃i than bidding bi. Here we assume x > x̃.

By the argument in Case 3 of Proposition 2 in Baisa (2016), bij > b̃ij ∀j ∈ {x̃+ 1, . . . , x}. By

construction, this implies b̃ij = UBj
i for j ∈ {x̃+ 1, . . . , x}. By the definition of UBi and the

fact that dqi (·) is decreasing,

Vi(b̃
i, b−i) = ui

(
x̃,

x̃∑
j=1

c−iM+1−j

)
= ui

(
x̃+ 1,

x̃∑
j=1

c−iM+1−j + dx̃+1
i

(
x̃∑

j=1

c−iM+1−j

))

≥ ui

(
x̃+ 1,

x̃∑
j=1

c−iM+1−j + dx̃+1
i (0)

)
= ui

(
x̃+ 1,

x̃∑
j=1

c−iM+1−j + b̃ix̃+1

)
.

Because bidding b̃i means that bidder i loses the x̃+ 1st unit, c−iM−x̃ ≥ b̃ix̃+1. Therefore,

ui

(
x̃+ 1,

x̃∑
j=1

c−iM+1−j + b̃ix̃+1

)
≥ ui

(
x̃+ 1,

x̃+1∑
j=1

c−iM+1−j

)
.

Continuing this argument inductively, we have that

Vi(b̃
i, b−i) ≥ ui

(
x,

x∑
j=1

c−iM+1−j

)
= Vi(b

i, b−i).

Second, we show that there exists b−i ∈ BN−1 such that Vi(b̃
i, b−i) > Vi(b

i, b−i). We

consider two cases. First suppose that bi1 < b̃i1. Take c−ij = γ ∀j ∈ {1, . . . ,M} where

γ ∈ (bi1, b̃
i
1). We know that b̃i1 = d1i . In addition, because bids are decreasing and bi1 < γ,

strategy bi wins zero units. Since b̃i2 ≤ bi2 ≤ bi1 < γ, bidding b̃i wins exactly one unit. Finally,
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because γ < d1i ,

Vi(b̃
i, b−i) = ui(1, γ) > ui(1, d

1
i ) = ui(0, 0) = Vi(b

i, b−i).

Now, instead suppose that b̃i1 = d1i ≤ bi1. Then b̃ix ≤ bix ∀x ∈ {1, . . . ,M} by construction and

there exists an x such that b̃ix = UBx
i < bix. Let x∗ be the minimum such x. Let c−ij = 0

for j ∈ {1, . . . , x∗ − 1}, let c−ix∗ = γ ∈ (b̃ix∗ , b
i
x∗), and let c−ij = ω > bix∗ for j > x∗. Bidding

b̃i means the bidder wins exactly x∗ − 1 units and pays nothing and bidding bi means the

bidder wins exactly x∗ units by construction, paying γ. Thus,

Vi(b̃
i, b−i) = ui(x

∗ − 1, 0) = ui(x
∗, UBx∗

i ) > ui(x
∗, γ) = Vi(b

i, b−i).

Therefore, b̃i weakly dominates bi.

A.2 Proof of Theorem 3.2

For the main part of the proof, it suffices to show that for any N -touple of preferences

u ∈ U(k)N and weakly undominated bid curves b ∈ BN , the resulting deadweight loss

DWL(a(b, V )) is at most the right hand side of (2),
∑M−1

j=1
(M−j)k
1−jk if k < 1/M,

(M − 1) otherwise.

Fix admissible preferences u ∈ U(k)N and undominated Vickrey auction bid curves b ∈ BN .

Step 1: Definitions and plan for proof. The deadweight loss DWL(a(b, V )) equals

the maximum size of a hypothetical perfectly competitive resale market. Hereafter, we omit

mention of ‘hypothetical’ and ‘perfectly competitive’ to facilitate exposition. In the resale

market, let ri denote the number of units that bidder i (hypothetically) buys or sells. Let

D ⊆ [N ] denote the set of bidders with ri ≥ 0 and S ⊆ [N ] denote the set of bidders with

ri < 0 (note we include bidders who do not trade in the resale market with the demand

side for convenience). We refer to bidders iD ∈ D as ‘buyers’ and bidders iS ∈ S as ‘sellers’

(though we emphasize these are categorizations in a hypothetical resale market). Suppose

the bid curves b are such that bD is the aggregate bid curve among all buyers iD ∈ D and

bS as the aggregate bid curve among all sellers iS ∈ S. We similarly define LBD and LBS

from the bidder lower bounds LBi. Under allocation a(b, V ), suppose that the sellers win qS

units in the Vickrey auction and the buyers win the remaining qD = M − qS units.

We will bound the size of the resale market unit by unit. That is, we imagine that buyers

line up in decreasing order of (inverse) resale demand and sellers line up in increasing order

of (inverse) resale supply. We bound the difference between the jth largest resale demand

27



and the jth smallest resale supply. We refer to this difference as ‘the gains from trade of

unit j.’ More precisely, we define the market (inverse) resale demand curve RD(j) as the

horizontal sum of individual buyer (inverse) resale demand curves RDi(j) over buyers i in

D (in an abuse of notation, we suppress that this is dependent on the allocation a(b, V )).

We then calculate the deadweight loss as

M∑
j=1

max{RD(j)−RS(j), 0}.

This expression equals DWL(a) because it represents the area between the demand and

supply curves in the resale market.

The plan for proof is as follows. We begin by establishing two basic facts: the gains

from trade of unit j is at most one, and the gains from trade of unit M is non-positive.

These two facts imply it suffices to show that if kM < 1, then RD(j)−RS(j) ≤ (M−j)k
1−jk for

j ∈ {1, 2, . . . ,M − 1}. The later steps of the proof bound RD(j)−RS(j) assuming kM < 1.

Step 2: The gains from trade of of unit j is at most one. Consider the gains from

trade of unit j. The supply RS(j) is at least zero because the units are goods. Furthermore,

demand is at most one, including in the resale market. Therefore, the gains from trade are

at most 1− 0 = 1.

Step 3: The gains from trade of unit M is non-positive. In other words, it will

never be the case that the hypothetical resale market ends with the buyers buying all of the

units from the sellers. The gains from trade of unit M can only be positive if the sellers win

M units in the Vickrey auction and the buyers win zero units. Accordingly, suppose qS = M

and qD = 0.

First, consider the demand side. In the resale market, the demand for unit M RD(M) is

the Mth largest resale demand, which is at most the largest resale demand RD(1). Because

qD = 0, the largest resale demand equals the buyer’s demand for the first object in the

Vickrey auction LB1
D. For every bidder, the only weakly undominated bid for the first item

is demand itself. Therefore, RD(M) ≤ LB1
D = b1D.

Second, consider the supply side. The supply for unit M is the Mth smallest resale

supply. By definition, there exists a seller iS ∈ S such that RS(M) = RSiS(qiS). Since

the only undominated bid for the first unit is LB1
iS

, the most that seller iS pays in the

Vickrey auction is qiSLB
1
iS

. Let RS?
iS

(qiS) denote seller iS’s resale supply for unit qiS under

a counterfactual allocation where seller iS pays qiSLB
1
iS

in the Vickrey auction to win qiS
units. Because units are normal, decreasing seller iS’s wealth can only decrease her supply
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curve, so RSiS(qiS) ≥ RS?
iS

(qiS). RS?
iS

(qiS) solves the following equation:

uiS(0, qiSLB
1
iS
− qiSRS?

iS
(qiS)) = uiS(1, qiSLB

1
iS
− (qiS − 1)RS?

iS
(qiS)).

Setting RS?
iS

(qiS) equal to LB1
iS

, this equation reduces to

uiS(0, 0) = uiS(1, LB1
iS

),

which is true by the definition of LB1
iS

. Therefore, RS?
iS

(qiS = LB1
iS

= b1iS . Because the

buyers did not win any units, b1iS ≥ b1D. Therefore, RS(M) = RSiS(qiS) ≥ RS?
iS

(qiS) =

LB1
iS

= b1iS ≥ b1D. Combining the demand and supply side,

RD(M)−RS(M) ≤ b1D − b1D = 0,

completing this step of the proof.

Step 4: Preliminary Bounds on the Gains from Trade of Unit j. Using Step

3, it suffices to calculate RD(j) − RS(j) for each unit j ∈ {1, 2, . . . ,M − 1} because at

most M − 1 units have positive gains from trade. Using Step 2, RD(j) − RS(j) ≤ 1 for

all j so DWL(a) ≤ M − 1. Note that (M−j)k
1−jk < 1 if and only if kM < 1. Therefore, it

suffices to show that, whenever kM < 1, RD(j)−RS(j) ≤ (M−j)k
1−jk . Assume kM < 1 and let

j ∈ {1, 2, . . . ,M − 1} for the remainder of the proof.

We place a lower bound on the supply for unit j, RS(j). By the definition of market

supply as the horizontal sum of individual supply curves, there exists a seller iS ∈ S and

unit ` ≤ j such that

RS(j) = s
qiS−`+1

iS
(tiS − (`− 1)RS(j)) = d

qiS−`+1

iS
(tiS − `RS(j)), (7)

by the characterization of the willingness to sell function. Because bidders have positive

wealth effects at most k, we get that

d
qiS−`+1

iS
(tiS − `RS(j)) ≥ d

qiS−`+1

iS
(tiS − jRS(j))

= d
qiS−`+1

iS
(0)− (d

qiS−`+1

iS
(0)− dqiS−`+1

iS
(tiS − jRS(j)))

≥ d
qiS−`+1

iS
(0)− k(tiS − jRS(j)). (8)

Note that the first inequality holds because we assume bidders have weakly positive wealth

effects and ` ≤ j. The final inequality holds from the implication of wealth effects being at
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most k. Combining (7) and (8),

RS(j) ≥ d
qiS−`+1

iS
(0)− k(tiS − jRS(j))

⇒ RS(j) ≥
d
qiS−`+1

iS
(0)− ktiS

1− kj
,

using the fact that kj < kM < 1 by assumption. Next, by construction of the Vickrey

auction, bidder iS (who is a seller in the hypothetical post auction perfectly competitive

resale market) paid at most her bid for last unit, b
qiS
iS

, on every unit she won in the auction,

meaning tiS ≤ b
qiS
iS
qiS , implying

RS(j) ≥
d
qiS−`+1

iS
(0)− kbqiSiS

qiS
1− kj

≥
b
qiS
iS
− kbqiSiS

qiS
1− kj

. (9)

The last inequality follows because, by definition, d
qiS−`+1

iS
(0) = UB

qiS−`+1

iS
, which is weakly

larger than the bid for unit qiS by Theorem 3.1. Because qiS ≤ qS, we can rewrite (9) as:

RS(j) ≥
b
qiS
iS

(1− kqS)

1− kj
. (10)

Note that (10) is non-negative because kqS ≤ kM < 1.

Next, we incorporate information about the demand curve to bound the gains from trade.

To relate the supply and demand curves, we replace b
qiS
iS

with a model primitive. Bid b
qiS
iS

is weakly larger than the last winning seller bid, bqSS , which is in turn larger than the first

losing buyer bid, bqD+1
D . Therefore,

b
qiS
iS
≥ bqSS ≥ bqD+1

D ≥ LBqD+1
D , (11)

using the fact that all bids are at least the lower bound. The following equation combines

(10) with (11) to place a bound on the difference between demand and supply (this is the

object of interest):

RD(j)−RS(j) ≤ RD(j)−
b
qiS
iS

(1− kqS)

1− kj

≤ LBqD+1
D − LBqD+1

D (1− kqS)

1− kj
+ (RD(j)− LBqD+1

D )

=
LBqD+1

D (qS − j)k
1− kj

+ (RD(j)− LBqD+1
D )

≤ (qS − j)k
1− kj

+ (RD(j)− LBqD+1
D ), (12)
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where the last inequality follows from the fact that demand is bounded by one.

The next two steps place bounds on the second term of (12). This term is the difference

between the resale demand curve and the lower bound curve in the Vickrey auction. Step

5 bounds this difference for an individual buyer and Step 6 extrapolates this bound to the

market-level curve.

Step 5. Resale Demand RDiD(j) Is Not Much Larger than LB
qiD+1

iD
. Consider a

bidder who would be buyers in the hypothetical resale market, iD ∈ D. We show that the

buyers resale demand for her j unit is bounded and RDiD(j) ≤ (1 + kqiD)LB
qiD+1

iD
.

Applying the definitions of demand and resale demand,

RDiD(j)− LBqiD+j

iD
= d

qiD+j

iD
(tiD + (j − 1)RDiD(j))− dqiD+j

iD
((qiD + j − 1)LB

qiD+j

iD
)

≤ d
qiD+j

iD
((j − 1)RDiD(j))− dqiD+j

iD
((qiD + j − 1)LB

qiD+j

iD
)

≤ k((qiD + j − 1)LB
qiD+j

iD
− (j − 1)RDiD(j)). (13)

The first inequality follows because the units are normal. The second inequality follows from

the implications of wealth effects being at most k. Solving (13) for RDiD(j) yields:

RDiD(j) ≤ 1 + k(qiD + j − 1)

1 + (j − 1)k
LB

qiD+j

iD

≤ (1 + kqiD)LB
qiD+1

iD
.

The second inequality follows because both the fraction and LB
qiD+j

iD
are decreasing in j.

Step 6. Market Resale Demand RDD(j) Is Not Much Larger than LBqD+1
D . In

analogy to the bound for individual buyers, we show RD(j) ≤ (1 +kqD)LBqD+1
D . Using Step

5, for all buyers iD ∈ D,

RDiD(j) ≤ (1 + kqD)LBqD+1
D (14)

because qiD ≤ qD and LBqD+1
D is equal to the maximum of LB

qiD+1

iD
across all buyers iD ∈ D.

Therefore, since individual demand for all units j is at most the right hand side of (14),

market demand for all units must be at most the right hand side of (14).

Step 7: Final Bounds on the Gains from Trade of Unit j. Applying Step 6 to

(12),

RD(j)−RS(j) ≤ (qS − j)k
1− kj

+ ((1 + kqD)LBqD+1
D − LBqD+1

D )

≤ (qS − j)k
1− kj

+ kqD =
(qS − j)k

1− kj
+ k(M − qS), (15)
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by the fact that demand is at most one and the definition of qD. Because the right hand side

of (15) is non-decreasing in qS and qS ≤M ,

RD(j)−RS(j) ≤ (M − j)k
1− kj

.

Step 8: The bound is tight. To prove that the bound is tight, we have to find

preferences u1, u2, . . . , uN ∈ U(k) and undominated bids b ∈ B such that DWL(a(b, V ))

equals the right hand side of (2). Consider the following preferences:

u1(q, t) =


1−(1−k)q−kt
k(1−k)q−1 if kM ≤ 1

1−(1−1/M)q−t/M
1/M(1−1/M)q−1 otherwise.

u2(q, t) = (1− ε)q − t

u3(q, t) = u4(q, t) = · · · = uN(q, t) = −t.

Without loss, we can suppose that k ≤ 1/M because the second case in u1(q, t) replaces k

with 1/M and also the second case in I(k, V ) is the limit of the first case as k → 1/M .

To begin, we derive bidder 1’s willingness to sell function sq1(t) which solves:

u1(q, t) = u1(q − 1, t− sq1(t))

⇒1− (1− k)q − kt
k(1− k)q−1

=
1− (1− k)q−1 − k(t− sq1(t))

k(1− k)q−2

⇒1− (1− k)q − kt = 1− (1− k)q − k(t− sq1(t))− k + k2(t− sq1(t))

⇒sq1(t) =
1− kt
1− k

.

Suppose that bidder 1 bids her upper bound of one for all units and bidder 2 bids her

demand of 1 − ε for all units. Bidder 1 wins all M units and pays M(1 − ε). Consider a

hypothetical resale market where bidder 2 can buy some units from bidder 1. Bidder 2 has

quasilinear preferences and thus demand RD2(j) equal to (1 − ε) for all units. Bidder 2’s

supply for the jth unit that bidder 2 sells in the resale market RS1(j) solves:

RS1(j) = sM−j+1
1 (M(1− ε)− (j − 1)RS1(j))

⇒RS1(j) =
1− k(M(1− ε)− (j − 1)RS1(j))

1− k

⇒RS1(j) =
1− kM(1− ε)

1− jk
.
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The deadweight loss thus equals

DWL(a(b, V )) =
M∑
j=1

max{0, RD2(j)−RS1(j)}

=
M∑
j=1

max{0, 1− ε− 1− kM(1− ε)
1− jk

}

→
M−1∑
j=1

(M − j)k
1− jk

,

completing the proof.

A.3 Proof that (3) and (4) are in U(k)

Consider the following preferences:

u1(q, t) =


1−(1−k)q−kt
k(1−k)q−1 if kM ≤ 1

1−(1−1/M)q−t/M
1/M(1−1/M)q−1 otherwise.

The second case of u1 simply replaces k with 1/M when k > 1/M . Since k < k′ ⇒ U(k) ⊆
U(k′), it suffices to assume that kM ≤ 1 and consider only the first case.

To show that u1 ∈ U(k), we conduct five checks:

1. u1(q, ·) is strictly decreasing and continuous.

2. If q̃ > q, then u1(q̃, t) ≥ u1(q, t).

3. Demand is bounded by one.

4. Demand is weakly declining.

5. Wealth effects are weakly positive and at most k.

The first item follows immediately. To show the second item, we note that we can assume

without loss that t ≤ M . This is true because in the Vickrey auction and in a hypothetical

perfectly competitive resale market, payment for any one of the M goods is bounded by one.

When t ≤M ,

1− k ≤ 1⇒ (1− k)(1− (1− k)q − kt) ≤ 1− (1− k)q+1 − kt

⇒u1(q, t) ≤ u1(q + 1, t).

Therefore, the second item holds.
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To show the third item, we first calculate the willingness to pay function dq1(t), which

solves:

u(q, t+ dq1(t)) = u1(q − 1, t)

⇒1− (1− k)q − k(t+ dq1(t))

k(1− k)q−1
=

1− (1− k)q−1 − kt
k(1− k)q−2

⇒1− (1− k)q − k(t+ dq1(t)) = (1− k)(1− (1− k)q−1 − kt)

⇒dq1(t) = 1− tk.

The (inverse) demand function LBq
1 solves:

LBq
1 = dq1((q − 1)LBq

1)

⇒LBq
1 =

1

1 + k

Demand is at most one, so the third item holds. Similarly, demand is weakly declining in q,

so the fourth item holds.

To prove the fifth item, it suffices to show that the slope of dq1(t) is in [−k, 0]. This holds

because the slope of dq1(t) is −k. Therefore, u1(q, t) ∈ U(k).

Finally, we move to the second utility function u2(q, t) = (1−ε)q−t. These are quasilinear

preferences and thus an element of U(0) ⊆ U(k).

A.4 Proof of Proposition 4.2

The proof proceeds in two steps. First, we show that for any N -touple of preferences

u ∈ U(k)N and undominated Uniform-price auction bid curves (b1, b2, . . . , bN) ∈ BN , and

resulting allocation a(b, UP ), the resulting deadweight loss DWL(a(b, UP )) is at most the

right hand side of (2). Second, we show that there exist preferences u ∈ U(k)N and undom-

inated bid curves such that the inefficiency equals the right hand side of (2).

Step 1. Consider the same basic definitions from the proof of Theorem 3.2. We

begin by establishing two preliminary facts about the equilibrium. First, for all units

j ∈ {1, 2, . . . ,M}, the resale gains from trade RD(j) − RS(j) are at most one. This is

true for the same reason as provided in the proof of Theorem 3.2. Second, the gains from

trade of unit M , RD(M) − RS(M), are not positive. This is true because the only un-

dominated bid for the first unit is demand d1i for all i. The same is true in the Vickrey

auction, and this is the only property that we used to establish the same fact in the proof

Theorem 3.2. Therefore, it extends to this case as well. Combining these two facts, we have

that the resale gains from trade are at most (M − 1), completing the first step of the proof.

Step 2. To show that the deadweight loss is at least M −1, it suffices to find preferences
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u ∈ U(k)N , undominated bids, the corresponding allocation a(b, UP ), and a resale market

such that the gains from trade equal M − 1. Consider the following preferences:

u1(q, t) = q − t,

u2(q, t) = u3(q, t) = · · · = uN(q, t) = −t.

These preferences are quasilinear and thus in in U(k). Bidder 1’s necessarily bids one for

the first unit but may bid anything at most one for the subsequent units. All other bidders

necessarily bid zero for all units. Suppose that Bidder 1 bids zero for all but the first unit

and only wins one unit. Since bidders are quasilinear, it is clear that Bidder 1 has demand

of B for the first M − 1 units sold in the resale market and that the supply curve equals

zero, meaning that resale gains from trade are equal to M − 1.

A.5 Proof of Proposition 4.3

First, I will show that Di(b̃i, b−i) ≥ Di(bi, b−i) for all b−i ∈ BN−1. Let b−i ∈ BN−1. Let

j ∈ {1, 2, . . . ,M} denote the largest index where bji > b̃ji . Such a j exists because b̃j
′

i ≤ bji for

all j′ ∈ {1, 2, . . . ,M} and, without loss, bi 6= b̃i. We will show that buyer i is weakly better

off replacing bji with b̃ji . Such a bid is still well-defined. Therefore, iterating this argument

until bi = b̃i, we conclude that Di(b̃i, b−i) ≥ Di(bi, b−i). Let b
(j)
i denote the modified bid

where bji is replaced with b̃ji : (b1i , b
2
i , . . . , b

j−1
i , b̃ji , b

j+1
i , . . . , bmi ). Let qi denote the number of

units that i wins by bidding bi and q
(j)
i denote the number of units that i wins by bidder

b
(j)
i . Note that qi ≥ q

(j)
i . There are three cases.

Case 1: qi < j. If bidder i wins fewer than j units by bidding bi, then by decreasing the

j’th component of her bid, she will still win qi units. She will also pay the same amount.

Therefore, her payment remains the same and Di(b̃
(j)
i , b−i) ≥ Di(bi, b−i).

Case 2: qi ≥ j and q
(j)
i = qi. In this case, bidder i wins the same number of units but

pays strictly less under b
(j)
i . Therefore, since utility is strictly decreasing in the payment

conditional on a fixed number won, Di(b̃
(j)
i , b−i) ≥ Di(bi, b−i).

Case 3: qi ≥ j and q
(j)
i < qi. Since only one bid changed, it must be that q

(j)
i = qi − 1.

It suffices to show that bidder i’s willingness to pay for her j’th unit, having paid the sum

of her first j − 1 bids for her first j − 1 units, is at most b̃ji = LBj
i . This will imply that i

has a lower utility than she would have without buying the jth unit for a price of bji , which

is greater than her willingness to pay. Indeed, such a claim holds:

dji

(
j−1∑
j′=1

bj
′

i

)
≤ dji ((j − 1)bji ) ≤ dji ((j − 1)LBj

i ) = LBj
i .
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The first inequality follows from the fact that bid curves are non-increasing and the will-

ingness to pay function decreases in its argument. The second inequality holds because

bji > b̃ji = LBj
i . The final equality holds by the definition of LBj

i . Therefore, in all three

cases, Di(b̃
(j)
i , b−i) ≥ Di(bi, b−i).

The second step is to show that there exists b−i ∈ BN−1 such that Di(b̃i, b−i) > Di(bi, b−i).

Choose b−i to equal zero such that bidder i wins all the units under both bi and b̃i. Then by

bidding b̃i, bidder i’s payment strictly falls but she still wins all M units. Because utility is

strictly decreasing in the amount paid, Di(b̃i, b−i) > Di(bi, b−i), completing the proof.

A.6 Proof of Proposition 4.4

The proof proceeds in two steps. First, we show that for any N -touple of preferences u ∈
U(k)N and undominated bids in B, the resulting deadweight loss is at most M . This result

follows immediately because there are M units for sale and demand is bounded by one.

Second, we show there exist preferences u ∈ U(k)N and undominated bids in B such that

the resulting deadweight loss equals M . Consider the following preferences:

u1(q, t) = q − t,

u2(q, t) = u3(q, t) = · · · = uN(q, t) = −t.

These preferences are quasilinear and thus in in U(k). Bidder 1 bids at most one for all

units. All other bidders necessarily bid zero for all units. Suppose that Bidder 1 bids zero

for all units and only wins no units. Since bidders are quasilinear, it is clear that Bidder 1

has demand of one for all M units sold in the resale market and that the supply curve equals

zero, meaning that resale gains from trade are equal to M , completing the proof.
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