
Large Multi-Unit Auctions with a Large Bidder

Brian Baisa∗and Justin Burkett†‡

May 24, 2017

Abstract

We compare equilibrium bidding in uniform-price and discriminatory auctions when a single
large bidder (i.e., with multi-unit demand) competes against many small bidders, each with
single-unit demands. We show that the large bidder prefers the discriminatory auction over the
uniform-price auction, and we provide general conditions under which small bidders have the
reverse preference. We use examples to show that the efficiency and revenue rankings of the two
auctions are ambiguous.

JEL Codes: C72, D44, D47, D61, D82.
Keywords: Auctions, Multi-Unit Auctions, Market Power, Large Auctions, Asymmetric First Price
Auctions.

∗Amherst College, Department of Economics, bbaisa@amherst.edu.
†Wake Forest University, Department of Economics, burketje@wfu.edu.
‡The authors thank Lawrence Ausubel, Jun Ishii, Stanislav Rabinovich, and seminar audiences at Davidson College

and the Informs Annual Meetings for helpful comments.

1



1 Introduction

Multi-unit auctions are often used to sell many units of a homogeneous good in markets with many
buyers. Prominent examples include the markets for treasury bills, Initial Public Offerings of stock,
and carbon emissions permits. Most of the multi-unit auctions used in practice are variants of the
uniform-price (UP) or the discriminatory-price (DP) auction. While there is no explicit characteri-
zation of the equilibrium of either auction in a general setting, Swinkels [1999, 2001] shows that it
is possible to characterize each equilibrium when the auction is large (i.e., it involves many bidders
and objects) and all bidders demand a negligible amount of the total issuance. Asymptotically
no bidder in Swinkels’ model influences the market’s clearing price (i.e., the lowest price at which
goods are awarded) with her actions and hence no bidder has market power. Swinkels uses this
observation to show that all bidders, as well as the seller, are approximately indifferent between the
two formats.

Yet the presence of market power is an important feature in many large auction settings, and
furthermore the degree of market power is not uniformly distributed across bidders. For example,
Hortaçsu and Puller [2008] analyze the difference in bid behavior between small and large bidders in
the Texas electricity sport market. While many bidders compete for the right to sell electricity, the
largest bidder controls 24% of distribution. There is evidence that bidders have market power in
U.S. Treasury auctions as well. Hortaçsu et al. [2015] report that primary dealers in U.S. Treasury
auctions are allocated 46% to 76% of the competitive demand.1

We take a first step in augmenting a large auctions model to allow for market power. In our
model, a single large bidder demands a non-negligible measure of the total issuance and competes
against a continuum of small bidders. Small bidders are heterogeneous and have negligible demand
when considered as a fraction of the total issuance. All bidders have private values. If we think of
Swinkels [1999, 2001] as modeling perfect competition in a multi-unit auction, then we model a mar-
ket akin to a monoposony.2 Our modeling approach of studying a single large player who competes
against many small players has previously been employed to study competition between a monopo-
list and “fringe firms” in an auction [Krishna, 1993]. Outside of the auctions literature, economists
have used similar models to study price setting behavior by a dominant firm that competes against
a competitive fringe [Carlton and Perloff, 1990].3

Although the revenue and efficiency rankings of the UP and DP auctions are generally ambigu-
ous in our model, we obtain clear predictions for the bidders’ preferences between the two formats.
A straightforward argument establishes that the large bidder prefers the DP auction in this envi-
ronment. Similar to the bidders in Swinkels’ model, the small bidders’ bids do not influence the

1Large bidders have more influence over the clearing price than small bidders by virtue of the number of units
they purchase, but they may also have an informational advantage, a hypothesis that is supported by recent empirical
research on treasury auctions [Hortaçsu and Kastl, 2012].

2There is a continuum of bidders in our model, but we use the term monopsony because only one bidder has
market power, who can be understood as purchasing units from a residual supply curve.

3The modeling strategy of studying a game with a single large player and a continuum of infinitesimal small
players has also been use by Menzio and Trachter [2015] to model competition among firms, Ekmekci and Kos [2016]
to model a corporate takeover, and Corsetti et al. [2004] to model a currency attack.
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clearing price in either format but do affect the price they pay in the DP auction. They consequently
shade their bids below their values in the DP auction but not the UP auction. On the other hand,
any serious bid by the large bidder determines the clearing price in both formats. We use this to
show that the large bidder’s marginal cost of winning additional units is always lower in the DP
auction than the UP auction when the large bidder’s small rivals bid according to an undominated
strategy. Hence, the large bidder favors the DP auction. At the same time, we also provide general
conditions under which small bidders typically have the reverse preferences over auction formats.

Bidder preferences over pricing rules have important practical implications. An immediate
implication is that the bidder preferences can influence the choice of auction format. Maskin and
Riley [2000a] report that “Similarly, in the lumber tract auctions in the Pacific Northwest, the local
‘insiders’ with neighbouring tracts have forcefully (and successfully) lobbied for open auctions and
the elimination of sealed high-bid auctions” (pg. 425). They suggest that this outcome was the result
of a strong bidder’s preference for a first-price auction over a second-price auction, where “strong”
means that their distribution stochastically dominates their opponent’s in the reversed hazard rate
order.4

Our model suggests that when comparing the UP and DP formats in a multi-unit setting size,
not strength, determines bidder preferences. Instead, we show that the relative strength of bidders’
distributions is important for comparing bidder preferences between the DP auction and the Vickrey
auction. More precisely, we show that determining equilibrium bid behavior in the DP auction can
be reduced to characterizing bid behavior in an asymmetric first-price auction. We also show
that a similar connection exists between the Vickrey auction and the second-price auction. These
connections allows us to use the results of Maskin and Riley [2000a] to show that a large bidder
prefers the Vickrey auction to the DP auction when she is sufficiently strong relative to her rivals,
and that small bidders have the reverse preference.5

While our main focus is on the case where there is a single large bidder with market power,
we also study how our results extend to a setting with multiple large bidders. In an augmented
model with two large bidders, we again show that determining bid behavior in the DP auction can
be reduced to characterizing bid behavior in an asymmetric first-price auction. Furthermore, we
can again use the connection between the DP auction and asymmetric first-price auctions to show
that the relative strength of the large bidder determines her preference between the DP auction
and the Vickrey auction. However, characterizing equilibrium bid behavior in the UP auction is
made more difficult by allowing for multiple large bidders. To illustrate this difficulty, we prove an
impossibility result about the existence of a tractable equilibrium in the UP auction when there
are multiple privately informed large bidders.6 Although this result inhibits us from presenting

4We define this ordering in Definition 1.
5Kirkegaard [2009] extends the results of Maskin and Riley [2000a] using a nice approach.
6By tractable equilibrium we are referring to an equilibrium in monotone pure strategies in which each bidder

bids weakly below their valuation and each bidder’s choice of clearing price is optimal after the opponents’ private
information is revealed. Equilibria satisfying these criteria are the focus of many of the papers in the literature
that consider uniform-price auctions with privately informed bidders (cf., Wang and Zender [2002]) or decentralized
market games in which uniform-price rules are used to select the market price with privately informed firms (cf.,
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a general preference ranking of the two auction formats, we present two cases in which we can
establish that the large bidder prefers the DP auction to the UP auction. In the first case, we show
that large bidders strictly prefer the DP auction to the UP auction when large bidder capacities
are sufficiently small.7 Second, we consider the case in which there is no asymmetric information
between large bidders.8 We characterize equilibrium bid behavior in both auctions, and we use this
characterization to show that a large bidder prefers the DP auction to the UP auction.

The remainder of the paper is organized as follows. Section 2 describes the main model. Section 3
gives our main results, and Section 4 gives an overview of our results on the two large bidder model.
Section 5 concludes. Proofs and a more formal discussion of two large bidder model are found in
the online appendix.

2 Model

A continuum of infinitesimal bidders of measure µs, referred to as the small bidders, compete in an
auction for one unit of a divisible good against a large bidder with demand for a non-zero measure,
µL, of the good. The small bidders are “single-unit bidders” each with value for an increment dq
denoted by vS and distributed according to the commonly known absolutely continuous distribution
function FS(vS) : [0, 1] → [0, 1]. We assume that the density, fS(vS), is strictly positive on its
support.

The large bidder has multi-unit demand and a constant marginal value for additional units. Her
willingness to pay for each marginal unit is given by her type, vL.9 The quantity demanded by the
large bidder is bounded above by her “capacity” µL. Thus, the large bidder gets zero marginal value
from winning any quantity of units beyond µL. We assume throughout that µS + µL > 1 (i.e., that
there is excess demand for all units) and µL ≤ 1. The large bidder’s type is distributed according
to the commonly known absolutely continuous distribution function FL(vL) : [0, vL] → [0, 1] with
density fL(vL), which we also assume to be strictly positive on its support.

We evaluate three pricing rules, the discriminatory-price rule (DP), the uniform-price rule (UP),
and the Vickrey rule.10 In all three auctions, a type-vS small bidder submits a bid b(vS) and a type-
vL large bidder submits a nonincreasing function of q, B(q, vL) : [0, µL]× [0, vL] :→ R+. Given the

Vives [2011]). See Section 4 for more discussion of these results.
7This is also a robustness check on Swinkels [2001]. We show that bidders with a small amount of market power

strictly prefer the DP to the UP auction, and this finding is consistent with our main result.
8Examples of papers taking this approach towards characterizing equilibrium behavior in UP auctions include

Wang and Zender [2002] and Ausubel et al. [2014].
9This flat demand assumption allows us to use results from the literature on asymmetric first-price auctions directly

in our analysis of the DP auction. A couple of our results generalize easily to cases where the large bidder’s demand
is downward sloping, and we note these cases. Generalizing all of the results to the downward-sloping demand case
would require an extensive analysis of a game similar to but distinct from an asymmetric first-price auction.

10Our analysis focuses on the UP and DP auctions, but we include the Vickrey auction as an efficient benchmark
that is useful for comparison.
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large bidder’s type and the functions b and B, the total quantity demanded at price p is

Q(p; vL, b, B) =

∫
b(vs)≥p

fS(vS) dvS + inf{q|B(q, vL) ≥ p}.

The clearing price, p∗, is determined by

p∗ ≡ sup{p′|Q(p′; vL, b, B) ≥ 1}.

In the UP auction, goods are awarded to all bidders with bids above the clearing price. The payment
for each increment is p∗dq. In the DP auction payments are determined by bids directly, so a winning
small bidder of type vS gets payoff vS − b(vS). The large bidder gets payoff,∫

B(q,vL)≥p∗
(vL −B(q, vL)) dq.

In the Vickrey auction, the large bidder pays the integral sum of the defeated small bidders’ values.
The winning small bidders pay the clearing price.

3 Main Results

3.1 Bidder Preferences

Swinkels [2001] shows that bidders are indifferent between participating in a DP and a UP auction
when no bidder has market power in a large auction. The Swinkels result holds because in each
auction all bidders face a decision problem that is asymptotically similar when they have negligible
demand and they face many rivals, even if bidders are ex ante asymmetric. In this section we
show that bidders generally have clear preference rankings over the DP and UP auctions in our
model where there is a large bidder with market power. As in Maskin and Riley’s model, the
bidder’s preference is driven by ex ante asymmetries. Yet, like Swinkels [2001] we show that ex ante
differences in bidder strength do not influence bidder rankings of the two auctions. Instead we find
that a bidder’s size — whether it be large or small — determines a bidder’s preferences over the
two auctions.

We first characterize equilibrium bid behavior in the UP auction. In the UP auction bid behavior
is determined using two rounds of iterative elimination of dominated strategies. First, note that it
is always a best response for a small bidder to bid truthfully. This is because the small bidder does
not have any impact on the market clearing price. By bidding truthfully, the small bidder wins if
and only if the market clearing price is below her value.

Remark 1. In the UP auction, bidding bS(v) = v is a weakly dominant strategy for a small bidder.

Remark 1 converts the large bidder’s decision problem into a standard monopsony pricing prob-
lem. If the large bidder’s highest losing bid is B,11 the large bidder wins the quantity determined by

11We ignore complications in the choice of price that may arise from a discontinuous bid curve here because the
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the residual supply curve at price B, S(B) := max{0, 1− (1−FS(B))µS}. Thus, the large bidder’s
payoff for a given highest losing bid B is

ΠU (B, vL) = S(B)(vL −B).

The optimal bid maximizes the above expression. It is without loss of generality to assume that the
large bidder submits a flat bid curve in this case, as only the highest losing bid affects the outcome
of the auction. Note that the large bidder’s bid is nondecreasing in her type.

The UP auction is inefficient because the large bidder buys too few units relative to the efficient
benchmark. This is because the large bidder has a demand reduction incentive that is equivalent
to a monopsonist’s incentive to lower the market price below the perfectly competitive benchmark.
Small bidders do not affect the price they pay when they win, and hence have no incentive to shade
their bids. This is not true in the DP auction, which we analyze next.

In the DP auction, small bidders do not have a dominant strategy and they shade their bids.
The large bidder again determines her bid by solving an optimization problem akin to that of a
price-setting monopsonist. However, the residual supply available to the large bidder depends on
the strategies of small bidders. In equilibrium the small bidders who do not win with probability
one bid according to an increasing bid strategy bS(v) with inverse φS(b). Small bidders who win
with probability one in equilibrium will all place the same bid. Thus, for these bidders, there is no
well-defined inverse. In equilibrium these bidders always bid weakly higher than the large bidder and
thus they can be ignored when evaluating the large bidder’s objective. For the sake of exposition,
we will talk about φS(b) as “the inverse bid function”. The large bidder optimizes by considering
the residual supply curve

S(φS(B)) := max{0, 1− (1− FS(φS(B)))µS}.

In the equilibrium of the DP auction, the large bidder submits a flat demand curve. A bid
function that is strictly decreasing over some interval is never a best reply to any bid strategy of
the small bidders. The large bidder receives a strictly higher payoff by submitting a flat demand
curve that equals the clearing price. By submitting a flat demand curve that equals the clearing
price, the large bidder wins the same number of units that she wins when she submits the strictly
decreasing bid function, but pays a lower price per unit. This observation is important, because
it allows us to parameterize the large bidder’s bid function by a single dimensional variable — the
value of her flat bid. Thus, given the small bidders’ strategy φS and the large bidder’s type t, the
large bidder selects B to maximize ΠD where

ΠD(B, vL;φS) := S(φS(B))(vL −B).

The large bidder prefers the DP auction to the UP auction in a strong sense (i.e., for all un-

equilibrium bid curve will be a constant function.
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Figure 1: Large Bidder’s Residual Supply Curves

dominated strategies that may be used by the small bidders) because it is a dominated strategy for
small bidders to bid at or above their value in the DP auction, but not in the UP auction. This
implies that S(B) ≥ S(φS(B)). Thus, the large bidder is better off in the DP auction because
she wins weakly more units for any flat bid B. We illustrate the large bidder’s respective residual
supply curves in Figure 1a. In the figure, we see that if a large bidder bids places the flat bid B for
a µL quantity of units, then the large bidder wins qD units in the DP auction and qU units in the
UP auction, where qD > qU . In each auction the large bidder pays a price of B per unit that she
wins. An identical argument also shows that the large bidder prefers the DP auction over the UP
auction in a setting where the large bidder has declining marginal values.

Proposition 1. The large bidder gets a higher (interim) payoff from the DP auction than from the
UP auction for all vL ∈ [0, vL].

Proof. Suppose φS(b) ≥ b ∀b. Then, S(φS(B)) ≥ S(B) because S is weakly increasing in B by
construction. If B∗ ∈ arg maxB ΠU (B, vL), clearly B∗ ≤ vL, implying

ΠU (B∗, vL) ≤ S(φS(B∗))(vL−B∗) = ΠD(B∗, vL;φS) =⇒ max
B

ΠU (B, vL) ≤ max
B

ΠD(B, vL;φS), ∀vL.

Next, we show that the DP auction is strategically similar to an asymmetric first-price auction
between two bidders, and we use this for further insight into bidders’ preferences over auction
formats. To see the connection between our DP auction setting and the asymmetric first-price
auction, consider an equilibrium of the DP auction where the large bidder bids a flat bid B(v) and
small bidders bid b(v). In equilibrium, there is some interval (b`, bh) on which bids are “competitive”,
meaning they win with probability strictly between zero and one. If a small bidder’s value is such
that her bid is in this open interval, then her bid wins if and only if her bid exceeds the flat bid of
the large bidder.

Similarly, the large bidder wins a quantity q ∈ (max{0, 1− µS}, µL) if and only if her (flat) bid
is in the competitive interval (b`, bh). Thus, the interaction between a large bidder, and a small
bidder with value v such that b(v) ∈ (b`, bh) is analogous to the interaction between two bidders
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in the corresponding asymmetric first-price auction. The large bidder’s interim payoff is written
identically to the interim expected payoff of a bidder in an asymmetric first-price auction who bids
against a rival that employs bid strategy b(v) and has value that is distributed over [φS(b`), φS(bh)],
where φS is inverse bid function mentioned earlier. We let F̃S(v) be the conditional distribution of
small bidder types in the interval [φS(b`), φS(bh)], where

F̃S(v) =
1

µL
− µS
µL

(1− FS(v)),

. Note that the distribution F̃S is determined by the exogenous quantities µS and µL (see Figure 1b).
We conclude that the equilibrium bid functions in the discriminatory auction are equivalent to the
equilibrium bids in an asymmetric auction where one bidder has distribution FL and the other has
distribution F̃S .

Lemma 1. An equilibrium in the DP auction can be constructed from the equilibrium of a first-price
auction between two bidders with values distributed according to F̃S(v) and FL(v). Small bidders
who are sure winners (i.e., those with value v > vh s.t. F̃S(vh) = 1) bid the largest equilibrium
bid from the constructed first-price auction, while any sure losers (i.e., those with value v < v` s.t.
F̃S(v`) = 0) bid their values.

A similar construction connects the Vickrey auction to the equilibrium of a single-unit second-
price auction. The logic is straightforward to see because it is an equilibrium to bid one’s value on
every marginal unit. Small bidders in the competitive region win if and only if their value exceeds
the large bidder’s. The large bidder wins a quantity that equals the fraction of small bidders in the
competitive region that have values below the large bidder’s value. This observation is stated in
Lemma 2 below.

Lemma 2. An equilibrium in the Vickrey auction can be constructed from a second-price auction
between two bidders with values distributed according to F̃S(v) and FL(v).

Several corollaries follow from the connections between the DP and Vickrey auctions and their
single unit auction counterparts. The first corollary establishes bidder preference between the
Vickrey and UP auctions. Recall, that in the UP auction, the large bidder wins relatively fewer
units than she does in the efficient outcome, and small bidders win relatively more frequently than
they do in the efficient outcome.

Corollary 1. The large bidder prefers the Vickrey auction to the UP auction. The small bidder
prefers the UP auction to the Vickrey auction.

In the literature on asymmetric first-price auctions, bidders are labeled “strong” or “weak” ac-
cording to how their respective distributions are stochastically ordered. It is typical to use the
reversed hazard rate order. This is defined below.

Definition 1. F �rh G ⇐⇒ F (x)
G(x) is nondecreasing for all x ∈ [0,max{1, vL}].12

12When f(x) and g(x) both exist, this implies f(x)/F (x) ≥ g(x)/G(x).
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Maskin and Riley [2000a] show that in an asymmetric single-unit auction the weaker bidder
prefers a first-price auction over a second-price auction, while the strong bidder has the reverse
preference. Thus, Lemmas 1 and 2 imply that if the large bidder’s distribution is strong relative
to F̃S(v) (i.e., FL �rh F̃S), the large bidder prefers the Vickrey auction to the DP auction; and
conversely if the large bidder’s distribution is weak relative to F̃S(v), the large bidder prefers the
DP auction to the Vickrey auction.

Corollary 2. If F̃S(v) �rh FL(v), then the large bidder prefers the DP auction to the Vickrey
auction. If FL(v) �rh F̃S(v), then the large bidder prefers the Vickrey auction to the DP auction.

In each case, small bidders have the reverse preference between the two auctions. If the small
bidders prefer the Vickrey auction to the DP auction, which is the case when they are relatively
strong, then a ranking between the UP auction and the DP auction follows immediately.

Corollary 3. If F̃S(v) �rh FL(v), then the small bidders prefer the UP auction to the DP auction.

Thus, we have provided conditions under which we can obtain a ranking of the DP, UP, and
Vickrey auctions from the perspective of the large bidder. For the small bidder, we have shown
that a UP auction is preferred to a Vickrey auction, and we have given conditions that determine
whether the small bidders prefer the DP auction to the Vickrey auction.

Example 1 gives an illustration of the large bidder’s ranking of the three auctions.

Example 1. Suppose that µL = µS = 1 and let

FL(vL) =
( vL

2α

) α
1−α

where 0 < α < 1 and 0 ≤ vL ≤ 2α. Also let the small bidder’s values be uniformly distributed
on [0, 1]. Let BA, Π∗A with A ∈ {U,D, V } be respectively the equilibrium bid function and interim
expected payoffs of the large bidder. Similarly, we let SA(vL) be the total surplus generated by each
format conditional on the large bidder’s type. In equilibrium, we find that

BU (v, q) =
v

2

BD(v, q) =
v

2

BV (v, q) = vL

Π∗U (v) =
v2

4

Π∗D(v) =
v2

4α

Π∗V (v) =
v2

2

SU (v) =
1

2

(
1 +

3v2

4

)
SD(v) =

1

2

(
1 +

(4α− 1)v2

4α2

)
SV (v) =

1

2

(
1 + v2

)
and that the small bidders bid according to bD(v) = αv in the DP auction. For any vL the revenue
in the UP auction is BU (vL, q), making the expected revenue α/2. The expected revenue in the DP
auction is greater at 2α/3.

A difficulty arises in determining the small bidders’ ranking between the DP and UP auctions.
In Example 1 all small bidders receive a higher interim expected payoff in the UP auction than they
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do in the DP auction. This is because the large bidder bids according to the same bid function
in both auctions, but small bidders shade their bid in the latter, but not in the former. Thus, a
small bidder with type v wins with a higher probability in the UP auction, qU (v), than the DP
auction, qD(v). If we let πU and πD be the interim expected payoff of the small bidder in the
two auctions, then a standard envelope theorem argument shows that qU (v) ≥ qD(v),∀v implies
πU (v) ≥ πD(v), ∀v.13

While in Example 1 all types of small bidders have higher interim win probabilities in the
UP auction than the DP auction, this is not true generally, preventing us from using an envelope
theorem argument to rank the auctions for the small bidders. In Example 4 in the Appendix, we
show that when the distribution of small bidders who have values in the competitive region (F̃S) is
sufficiently weak relative to the large bidder’s, then some types of small bidders can have greater
interim win probabilities in the DP auction.14 However, in Example 4 we still see that all types of
small bidders prefer the UP auction to the DP auction, even though higher types of small bidders
win with greater probability in the latter.

Although we are able to construct examples where a small bidder prefers the DP auction to
the UP auction (see Example 5 in the Appendix), we find that this is not typically the case and
we provide a sufficient condition under which all small bidders prefer the UP auction to the DP
auction. To introduce the sufficient condition for comparing the small bidders’ preferences between
the two auctions, let φL(b) be large bidder’s inverse bid function in the DP auction. Let b(v) be the
bid small bidders’ equilibrium bid function in the DP auction. Thus, a type-v small bidder wins in
the equilibrium of the DP auction if and only if the large bidder’s value is below φL(b(v)).

While the value of φL(b(v)) cannot generally be given in closed form, the analogous quantity in
the UP can be. A type-v small bidder wins a unit in the UP auction if and only if the large rival
has a value below τ(v) where τ is derived by studying the large bidder’s first-order condition.

Using the large bidder’s first-order condition for the UP auction, the type of large bidder that
a type-v small bidder ties with in the UP auction is defined in terms of primitives as15

τ(v) ≡

0 v < v`

min
{
v + 1−µS(1−FS(v))

µSfS(v)
, vL

}
v ≥ v`.

13The envelope theorem implies that πA(v) =
∫ v
0
qA(v) dv for auction A.

14This phenomenon occurs generally whenever the large bidder’s capacity µL is small. When µL is small in the
UP auction and the large bidder is a high type (i.e., a type near vL), then the large bidder typically exhausts her
capacity and reports a bid that ensures she wins µL units. However, similar to a first-price auction, it is only the
highest type of large bidder that purchases the full amount µL in the DP auction. Any other type purchases less than
the full amount. This implies that the higher types of small bidders must be outbidding more large bidder types in
the DP auction when µL is small. Hence, they can have a higher interim win probability in the DP auction.

15The small bidder value v` and vh are the cutoff values for sure winners and sure losers defined in Lemma 1. Note
that the set of sure winners and losers is the same in either auction. In this definition we implicitly require that
τ(v) is nondecreasing, which we assume in Condition 1. This is analogous to the requirement that the marginal cost
associated with purchasing from the large bidder’s residual supply curve in the UP auction is nondecreasing. Finally,
note that it is possible that τ(v) jumps at v` and/or vh. With a jump at v`, a large bidder with type 0 < vL < τ(v`−)
bids zero. With a jump at vh, a large bidder with type τ(vh+) < vL < vL places the same bid as the τ(vh+) type.
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The condition we provide guarantees that the following inequality holds, which implies that a small
bidder with type v is weakly better off in the UP auction compared to the DP auction.∫ v

v`

FL(τ(x)) dx ≥
∫ v

v`

FL(φL(b(x))) dx.

If this holds for all v ∈ [v`, vh], then this is equivalent to saying that the distribution FL(φL(b(x)))

second-order stochastically dominates the distribution FL(τ(x)). We show that second-order stochas-
tic dominance holds in this environment under the following sufficient condition.

Condition 1. For v ∈ [v`, vh], either

(i) F̃S(v) �rh FL(v); or

(ii) FL(v) �rh F̃S(v), τ(v) is nondecreasing and F̃S(v) �rh FL(τ(v)).

Corollary 3 implies that the small bidders prefer the UP auction to the DP auction when (i)
holds in Condition 1. This is because when the small bidders in the competitive region are strong
(in the reverse hazard rate sense) relative to the large bidder, they bid less aggressively than the
large bidder in the DP auction, winning less than the efficient quantity. In contrast, they win more
than the efficient quantity in the UP auction, because the large bidder shades her bid. Thus they
have higher interim win probabilities in the UP auction and favor that format.

We can also establish that the small bidders prefer the UP auction to the DP auction when the
second part of Condition 1 holds. The second part of Condition 1 requires that the small bidders
are strong compared to the hypothetical large bidder with type distribution FL(τ(v)). Given the
definition of τ(v), the small bidders are indifferent between facing a large bidder in the UP auction
with type distribution FL(τ(v)) and a large bidder in the Vickrey auction with type distribution
FL(v). It follows from Corollary 2 that if F̃S(v) �rh FL(τ(v)) the small bidders prefer competing
against a large bidder with type distribution FL(v) in the UP auction to competing against a large
bidder with type distribution FL(τ(v)) in the DP auction.

In the proof of Proposition 2 we strengthen this statement by showing that under Condition 1
the small bidders prefer competing against the large bidder with type distribution FL(v) in the UP
auction to competing against the large bidder with the same type distribution in the DP auction.
The argument proceeds in two steps. First, we argue that under the condition τ(v) may only
cross φL(b(v)) once from above, and second that the mean of the random variable with distribution
FL(φL(b(x))) (or equivalently the highest bid made in the DP auction) is weakly larger than the
mean of the random variable with distribution FL(τ(x)) (or the expected payment of the highest
small type in the UP auction). Together these facts imply that the random variable with distribution
FL(τ(v)) second-order stochastically dominates the random variable with distribution FL(φS(b(v))),
and this is sufficient to determine the small bidders’ preferences.

Proposition 2. Under Condition 1, the small bidders prefer the UP to the DP auction.

The following example illustrates a case in which the second part of Condition 1 applies.
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Example 2. Suppose that there is a unit measure of small bidders, and the large bidder has
capacity for all availble units, µL = µS = 1. In addition, suppose that small bidder values have
distribution U [0, 2] and the large bidder’s values have distribution U [0, 3]. In this case, the large
bidder is stronger than small bidder and hence part (i) of Condition 1 does not hold. However, part
(ii) of Condition 1 holds because τ(v) = 2v and hence FS(v) = F̃S(v) = .5v and FL(τ(v)) = 2

3v.
Thus, Condition 1 holds and Proposition 2 implies that small bidders prefer the UP auction to the
DP auction, even when their distribution is weak relative to their large rival.

3.2 Revenue and Efficiency Ambiguity of UP and DP Auctions

Ausubel et al. [2014] uses examples to show that the revenue and efficiency rankings of the UP and
DP auctions are ambiguous. We obtain similar results in our large auction setting.16

In Example 1, the DP auction gives greater revenue than the UP auction. This is immediate
to see as the clearing price is the same in both auctions (the large bidder bids the same flat bid
in both), and all small bidders who win units pay an amount above the clearing price in the DP
auction. In addition, if we assume that α = 1

2 in Example 1, then the DP auction is efficient. This
is because equilibrium bid behavior is equivalent to bid behavior in a symmetric first price auction.
At the same time, the UP auction is inefficient because the large bidder engages in bid shading.

In Example 3 below, we illustrate that the two auctions have ambiguous revenue and efficiency
rankings by constructing a case where the UP auction is more efficient (yields greater expected
surplus) and has greater expected revenue when compared with the DP auction.17

Example 3. Suppose that µS = µL = 1 and the large bidder’s value, vL, takes values in {0, 2}
with probability 1

2 each.18 Small bidders values are uniformly distributed over [0, 1]. In the UP
auction, the large bidder bids 0 if vL = 0, and any bid greater than or equal to 1 is a best response
if vL = 2. Therefore, expected revenue is 1

2 . In the DP auction, the large bidder bids 0 if vL = 0.
Thus, all small bidders know that they win with probability of at least 1

2 if they bid any amount
ε > 0. Moreover, no small bidder submits a bid above 1

2 because

lim
ε→+0

1

2
(v − ε) =

v

2
≥ v − 1

2
≥ p(v − 1

2
) ∀p ∈ [0, 1], v ∈ [0, 1].

16While we cannot generally rank the revenues of the DP auction and the Vickrey auction, the connection to the first-
and second-price auctions suggests that existing work on the revenue raised by asymmetric first-price auctions [Maskin
and Riley, 2000a, Kirkegaard, 2012] would apply here. When all small bidders are in the competitive region and all
of the large bidder’s bids compete with small bidders (i.e., µL = µS = 1), the revenues generated by the DP and
Vickrey auctions are the same as the revenues from the corresponding single-unit auctions. Note that in this case
F̃S(v) = FS(v). However, with small bidders that are sure winners and/or sure losers, this is no longer the case,
because the strategies are determined using the (FL, F̃S) single-unit auctions for which the corresponding revenues
will differ from the DP and Vickrey auctions. Consider the fact that the revenue from the (FL, F̃S) single-unit auction
does not incorporate payments from sure winners. We therefore do not get immediate revenue rankings in these cases.

17Example 1 already illustrates the ambiguous efficiency rankings of the two auctions. While the DP auction
generates greater ex post surplus when α = 1

2
, the UP auction generates greater ex post surplus when α < 1

3
.

18This violates our assumption that the large bidder has values that are draws of a random variable that has density
fL with full support over an interval. However, we could construct an almost equivalent example where the large
bidder has type vL that is the draw of a random variable that has an associated density fL that has full support over
[0, 2], yet arbitrarily large density near 0 and 2 and arbitrarily small density over the interval (ε, 2− ε).
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The large bidder never submits a bid above 1
2 because small bidders never bid above 1

2 . Since small
bidders never bid above their value, then an upper bound on the small bidders’ bid function is
b(v) = min{v, 12}. Thus, if the large bidder has value vL = 0, the upper bound on revenue is∫ 1

0
b(v)dv =

3

8
.

If the large bidder has value vL = 2, the upper bounds on revenue is 1
2 . Therefore, expected revenue

of the DP auction bounded above by 7
16 .

Thus, we see that there are cases where the UP auction has higher revenue than the DP auction.
Notice also that the outcome of the UP auction is Pareto efficient for any realization of the large
bidder’s value. If vL = 0, the large bidder’s value for additional units is below the value of all
small bidders, and the large bidder does not win any units. If vL = 2, the large bidder’s value
for additional units exceeds any small bidder’s value for units, and the large bidder wins all units.
At the same time the DP auction is not Pareto efficient, because when the large bidder has value
vL = 2 she does not win all units with probability one. Thus, there is a positive probability there
are Pareto improving trades where the large bidder buys units from small bidder. This differs from
the revenue and efficiency rankings presented in Example 1. Therefore Examples 1 and 3 show that
the two auctions have ambiguous revenue and efficiency rankings.

4 Extensions with Multiple Large Bidders

We study three extensions of our benchmark model to show how our results extend to settings with
multiple large bidders. In each case, we assume that there are two ex ante identical large bidders
that each have capacity µL > 0 and a privately known constant value for all marginal units up
to the capacity. Large bidder i’s private value vLi is drawn independently from the distribution
FL. We continue to assume that there is a continuum of small bidders distributed according to
distribution FS , and each small bidder has infinitesimal demand. We give an overview of our results
on the multiple large bidder case below, and we provide a complete discussion of these results in
the online appendix.

We first study a model where each large bidder has capacity for all available units µL = 1.
Similar to the case with one large bidder, we show that an equilibrium in the DP auction can be
constructed by studying a corresponding asymmetric first-price auction involving three bidders, two
of whom have the same distribution (Proposition 3).19 Similarly, an equilibrium in the Vickrey
auction can be constructed from a corresponding single-unit second-price auction. From these
results we find that the large bidders prefer the DP auction to the Vickrey auction if the large
bidders have a weaker type distribution than small bidders, and that in this case the small bidders
have the reverse ranking. The preferences of each type of bidder reverse if the large bidders have
stronger type distributions.

19The arguments in Proposition 3 extend to a setting with an arbitrary number of large bidders.
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While our comparison of the large bidder’s preference over the DP auction and the Vickrey
auction can be extended to a setting with multiple large bidders, we show that finding an equilibrium
of the UP auction is more difficult. Toward this end, we provide an impossibility result. To be more
preicse, we search for a pure-strategy equilibrium satisfying properties guaranteeing that the clearing
price is optimal for each large bidder ex post, meaning a large bidder would not choose a different
clearing price after the private information is revealed. We prove that no such equilibrium exists
in our model with multiple privately informed large bidders (Proposition 4). Equilibria with these
properties are the focus of much of the literature on UP auctions and related games, due to their
tractability.20 If the UP auction has an ex post equilibrium, then it must be that the large bidder’s
bid curve is always an ex post best reply to her rival. In other words, the large bidder reports
a bid curve that selects her preferred price-quantity pair for every realization of her rival’s type.
We show that any candidate solution to this pointwise maximization problem would violate the
monotonicity restriction on bid curves in the UP auction. Hence there is no ex post equilibrium of
the UP auction.21

Although Proposition 4 impedes a general characterization of bid behavior in the UP auction,
we are able to determine the large bidders’ preferences over the DP and UP auctions in two cases.
In the first, large bidders do not demand all available units. We show that if large bidders have
sufficiently small capacity, then each large bidder gets a greater expected payoff in the DP auction
than the UP auction (Proposition 5). We obtain a ranking of large bidder preferences over the
two auctions by placing bounds on bid behavior, instead of directly characterizing equilibrium. In
the UP auction we assume that the large bidders play a strategy that is undominated given that
her small rivals bid truthfully. We are able place a bound on the set of all bid strategies that are
undominated given that the large bidder’s small rivals bid truthfully. We use this bound on bid
behavior to obtain an upper bound on a large bidder’s expected payoff in the UP auction. We then
show that the upper bound on the large bidder’s expected payoff in the UP auction is below a lower
bound on her expected payoff in the DP auction. Thus, the large bidder prefers the DP auction to
the UP auction when the large bidder has sufficiently small capacity. This result is also a robustness

20Wang and Zender [2002] is an example of such a paper studying uniform-price auctions. When they consider
privately informed bidders they focus on equilibria that are ex post optimal. The route they take is slightly dif-
ferent from ours. They search for Bayesian Nash equilibria in which there exists a sufficient statistic of opponent’s
information uniquely determining the clearing price and show that these equilibria must be ex post optimal (see pg.
686). Vives [2011] studies a market in which privately informed firms submit supply curves against a known demand
curve. The rules determining the market price and the payoffs are analogous to a uniform-price auction. Vives [2011]
shows that the equilibrium price reveals the relevant information contained in the signals of the opposing firms. An
implication is that each bidder’s choice of clearing price is optimal given other bidders’ information.
Back and Zender [1993] describe another type of equilibrium in the UP auction. They show that it can be an

equilibrium for private informed bidders in a divisible good UP auction to bid in such a way to split the quantity
auctioned at a very low price. Bidders in the Back and Zender [1993] construction bid very high for their split of
the good and drop their demand to the low price after (see their Theorem 1). This construction works by presenting
any opposing bidder with a residual supply curve that has a vertical marginal cost at the quantity they are intended
to purchase. Such construction does not work in our model, because the presence of the small bidders puts a lower
bound on the slope of the residual supply curve in the UP auction.

21A Bayesian Nash equilibrium that is not an ex post equilibrium necessarily involves endogenously binding mono-
tonicity constraints. See the Appendix for more discussion of this point.
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check of Swinkels [2001], since it establishes that the large bidder strictly prefers the DP auction
over the UP auction when both large bidders have small, but non-negligible, capacities.

Finally, we establish that large bidders have higher equilibrium payoffs in the DP auction than
they do in the UP auction if there is no asymmetric information among large bidders. This informa-
tion structure is analogous to others used in the literature on multi-unit auctions.22 In this setting,
we can explicitly characterize equilibrium behavior in both auctions (although there are multiple
equilibria in the UP auction), and we show that the large bidders’ payoffs in the equilibrium of the
DP auction may exceed the large bidders’ payoffs in the UP auction (Proposition 6).

5 Conclusion

We introduce a tractable model of large multi-unit auctions with a single large bidder. We show
that the large bidder has a clear preference for a discriminatory pricing rule compared to a uniform
pricing rule. We give sufficient conditions under which small bidders have the have the reverse
preference and prefer the uniform-price auction. We also give examples that show that revenue and
efficiency comparison between the uniform-price and discriminatory-price auctions are generally
ambiguous.

Our model is tractable in comparison to more general models of multi-unit auctions. This is
because we are able to reduce the discriminatory-price auction to a asymmetric first-price auctions
for a single-unit, even when there is more than one large bidder. Therefore, this model may prove
fruitful in future research.

A Online Appendix

A.1 Proofs and Examples Omitted from Paper

Proof of Lemma 1 Let F̃S(x) = 1
µL
− µS

µL
(1 − FS(x)). This is a distribution function for an

appropriately defined support, [v`, vh]. If µS > 1 choose v` to solve F̃S(v`) = 0, setting v` = 0

otherwise. Note F̃S(x) has a mass point at x = 0 if µS < 1. Choose vh to solve F̃S(vh) = 1.
Temporarily ignore the small bidders with valuations outside of the interval [v`, vh]. Observe

that it is a weakly dominant strategy to submit a flat bid curve for the large bidder,23 and consider
the first-price single-unit auction with two bidders in which the type distributions are FL and F̃S .
An equilibrium of this auction exists in which there is a common maximum bid b [Maskin and Riley,
2000b, 2003, Lebrun, 1999]. Let (B, b̃) be the equilibrium bid functions. Define b on [0, 1] by setting
b(v) = b̃(v) for v ∈ [v`, vh], b(v) = v for any v ≤ v` and b(v) = b for any v ≥ vh. We claim that this

22For example, both Ausubel et al. [2014] and Wang and Zender [2002] emphasize analyses of cases in which
bidders are not asymmetrically informed. In the Industrial Organization literature, Klemperer and Meyer [1989]
is a prominent example of a market game analogous to a UP auction in which firms submit supply curves and a
uniform clearing price is determined. In their model, demand is allowed to be stochastic but there is no asymmetric
information among firms.

23Any decreasing bid curve that crosses the residual supply curve at the same point as a flat bid curve must lead
to a lower payoff for the When the same fraction of units are won at a higher cost.
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is an equilibrium of the original game. For small bidders with v < v`, any bid above their value is
weakly dominated. For bidders with v ∈ [v`, vh] the conditions for (B, b̃) to be an equilibrium in the
first-price auction game ensure that no deviation in [v`, b] is profitable. In particular, bids above b
are weakly dominated by b which wins with probability one. Bids below v` lose with probability
one. For small bidders with v > vh, the single crossing condition on their payoff ensures that they
earn more from bidding b and winning for sure than by bidding at any lower level. Finally, the
mass of small bidders that may arise at the upper end of the bid distribution does not cause any
difficulties for the large bidder’s proposed strategies because with a bid of b she wins all of the units
that she has value for with probability one, and so cannot gain by increasing her bid.

Example 4 (Small bidders may win with higher interim probability in the DP auction). Assume
that the large bidder has capacity µL < 1/2, and vL ∼ U [0, 1]. Assume that measure of small
bidders is such that µS = 1 and vS ∼ U [0, 1]. To construct an equilibrium, let F̃S(v) = v/µL for
v ∈ [0, µL]. The first-price auction with distributions FL and F̃S has equilibrium bid functions given
by

BD(v) =

√
1 + kv2 − 1

kv
bD(v) =

1−
√

1− kv2
kv

where k = µ−2L − 1 and b = µL/(1 + µL) is the maximum bid.24 For v > µL set bD(v) = b to
complete the description of equilibrium. The small bidders’ win probabilities and payoffs in the DP
auction are

qD(v;µL) =

 v√
1−kv2 if v ≤ µL

1 if v > µL
πD(v;µL) =

 v√
1−kv2 (v − bD(v)) if v ≤ µL

v − µL
1+µL

if v > µL.

In contrast, the small bidders’ win probabilities and payoffs in the UP auction are given by

qD(v;µL) =

2v if v ≤ µL
1 if v > µL

πU (v;µL) =

v2 if v ≤ µL
v − µL + µ2L if v > µL.

The small bidders prefer the UP to the DP auction. The large bidder has the reverse preference.

Example 5 (Small bidders may prefer the DP auction). Suppose that µL = µS = 1 and let FL(vL)

be such that there is a 1
2 probability that the large bidder is type vL = 0 and there is a 1

2 probability
that the large bidder is type vL = 10. Small bidders have type FS(vL) = (1− ε)vL if vL < 1. There
is also an ε > 0 measure of small bidders with type t = 100.

In the UP auction, small bidders truthfully report their type and the large bidder best responds
by bidding 0 if vL = 0 and 1 if vL = 10. Thus, a small bidder with type vL = 100 gets an expected
payoff of 99.5.

In the DP auction no bidder bids above their value. Thus, for a small bidder, and bid b > 0 wins
with probability of at least 1

2 . This implies that any small bidder with type v ≤ 1 bids b(v) ≤ 1
2

24This example is from Plum [1992] who allows for the distributions to take the form F (x) = xa for a > 0, but it
is sufficient for our purposes to work with the a = 1 case.
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because
lim
b→0

1

2
(v − b) ≥ v − 1

2
,

where the left hand side is a lower bound a bidder’s payoff from submitting an arbitrarily small bid
and the right hand side is an upper bound on a bidder’s payoff from bidding 1

2 .
Moreover, when the large bidder has type vL = 10, she bids by submitting a flat bids that mixes

over (0, b) with no atoms, where b. The large bidder mixes over a support that has zero as a lower
bound, because if the large bidder mixed over a support where b > 0 was the lower bound on her
bid, then no small bidder would bid in the interval (ε, b). In addition, b ≤ 1

2 because almost all
small bidders bid below 1

2 .
Since the large bidder mixes over (0, b) with no atoms, then it follows that small bidders bid

according to strategy b(v), that is continuous and such that b(0) = 0 and b(1) = b. Thus, a small
bidder’s interim probability of winning given that she is type v is q(v) where q is continuous, and
such that q(v) ≥ 1

2 if v > 0 and q(1) ≈ 1. A standard envelope theorem condition then implies that
a small bidder with type v = 1 gets payoff

1− b ≈ q(1)(1− b) =

∫ 1

0
q(s)ds >

1

2
=⇒ b <

1

2
.

Thus, a small bidder with type v = 100 knows that the clearing price is at most b. Thus, the
bidder with type v = 100 gets a payoff of at least 100− b > 99.5 because b < 1

2 .

Proof of Proposition 2 If the first part of Condition 1 holds, the result follows from Corollary 3.
Therefore, assume the second part of the condition holds. We first show that if τ(v) and φL(b(v))

cross, the latter is steeper. For a contradiction suppose that τ(v) and φL(b(v)) cross at v̂ and the
former is steeper than the latter. Then at b̂ = b(v̂), φL(b̂) = τ(φS(b̂)) and φ′L(b̂) < τ ′(φS(b̂))φ′S(b̂).
From the FOCs of the DP auction and Condition 1,

FL(φL(b̂))

fL(φL(b̂))

1

φS(b̂)− b̂
<
F̃S(φS(b̂))

f̃S(φS(b̂))

1

φL(b̂)− b̂
τ ′(φS(b̂)) ≤ FL(φL(b̂))

fL(φL(b̂))

1

φL(b̂)− b̂
,

which is a contradiction because the small bidders being weaker implies φS(b) < φL(b) for all
equilibrium bids [Maskin and Riley, 2000a, Proposition 3.5].

Next we show that the highest bid made in the DP auction is at least as big as the expected
payment of vh in the UP auction or that

b =

∫ vh

v`

x dFL(φL(b(x))) ≥
∫ vh

v`

x dFL(τ(x)),

where b is the largest equilibrium bid in the DP auction. From the large bidder’s preference for the
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Vickrey auction (due to her strength) and Condition 1,

b =

∫ vL

0
x dF̃S(φS(B(x))) >

∫ vh

v`

x dF̃S(x) ≥
∫ vh

v`

x dFL(τ(x)).

Combined, the facts that FL(τ(v)) may only cross FL(φL(b(v))) from below and that the payoff
of the highest type of small bidder is higher in the UP auction prove the proposition.

A.2 Model Extension 1: Privately Informed Large Bidders

We first consider a straightforward extension of the original model. We now study a model with
two large bidders. Again, each large bidder has a constant marginal value for additional units that
equals her type vL which is an i.i.d. draw of a random variable with distribution FL(vL). We study
the case where both large bidders value all units, µL = 1, and the measure of small bidders is one,
µS = 1.

A.2.1 Equilibrium in the DP and Vickrey Auctions

We again show that we can characterize equilibrium in the DP auction by studying a corresponding
asymmetric first price auction. Or in other words, we are able to extend the implication of Lemma 1
to the multiple large bidder setting. To see this, consider an asymmetric first-price auction with
three bidders. Two of the bidders are type “L” bidders and have values that are independent draws
of a random variable that has distribution FL. The remaining bidder is a type “S” bidder that
has a value that is an independent draw of a random variable with distribution FS .25 Lebrun
[1999] characterizes equilibrium bid behavior in this case. He shows that an equilibrium of this
asymmetric first-price auction exists and equilibrium bid behavior is described by two inverse bid
functions, φL(b) and φS(b). Both inverse bid functions are defined on [0, b] and solve the system of
equations below.

φ′L(b)
fL(φL(b))

FL(φL(b))
+ φ′S(b)

fS(φS(b))

FS(φS(b))
=

1

φL(b)− b
(1)

2φ′L(b)
fL(φL(b))

FL(φL(b))
=

1

φS(b)− b
. (2)

Equations (1) and (2) correspond to the first-order conditions of the type L and S bidders respec-
tively.

Proposition 3 shows that this first-price equilibrium also describes equilibrium bid behavior in
our DP auction setting. The proposition would be immediate if the large bidders were restricted
to submitting flat bid curves. The primary challenge is to show that any one large bidder does not
want to deviate and submit a bid curve that decreases on some quantity interval. The argument
proceeds in two steps. First we choose an arbitrary point on the small bidders’ residual supply curve.

25Our assumptions in this section imply that F̃S = FS .
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The associated quantity, q0, represents the quantity won by a large bidder when the opposing large
bidder has a sufficiently low type. Given that a large bidder’s bid curve intersects the small bidders’
residual supply at this point, we prove that the bid curve must be flat to left of that point (for
q ≤ q0).26 This rules out that the bid curve is downward sloping on some interval [qa, qb] with
qb < q0. Having optimized for an arbitrary q0 we then consider the optimal choice of q0 and show
that the resulting bid curve is flat at the first-price auction bid bL(v).

Proposition 3. If bL(v) and bS(v) are the equilibrium bid strategies of the type L and type S bidders
in an asymmetric first price auction with two type L bidders and one type S bidder, then in our DP
auction it is an equilibrium for the large bidders to bid bL(v) for all units and the small bidders to
bid according to bS(v).

Proof. Consider the problem of a type-vL large bidder when all other bidders follow the proposed
strategy. We show bidding b(q, vL) = bL(vL),∀q ∈ [0, 1] is a best reply for the large bidder among
all nonincreasing bid schedules. Given a quantity q0 to be purchased when the opposing large
bidder has type zero (i.e., q0 solves FS(φS(b(q0, vL))) = q0), consider the choice of b(q, vL) for
q ≤ q0 subject to the constraint b(q, vL) ≥ b(q0, vL). Ignoring the monotonicity constraint, the large
bidder’s objective function for determining her bid for her qth quantity increment is

max
b(q,vL)

FL(φL(b(q, vL)))(vL − b(q, vL)) s.t. b(q, vL) ≥ b(q0, vL), (3)

because conditional on b(q, vL) ≥ b(q0, vL) the large bidder wins a unit q < q0 if and only if b(q, vL) ≥
bL(VL) where VL is the type of the opposing large bidder. Let b̂(vL) = arg maxb FL(φL(b))(vL − b).
There are two cases. If b(q0, vL) ≤ b̂(vL), then clearly b(q, vL) = b̂(vL) solves (3). Otherwise, if
b(q0, vL) > b̂(vL), then b(q, vL) = b(q0, vL) solves (3) because the objective is quasi-concave. Note
that the monotonicity constraint is not violated in either case.

The second step is to choose q0 optimally. If b(q0, vL) < b̂(vL), the payoff is

q0FL(φL(b̂(vL)))(vL − b̂(vL)),

which is clearly increasing in q0. For b(q0, vL) ≥ b̂(vL), the payoff is

FS(φS(b(q0, vL)))FL(φL(b(q0, vL)))(vL − b(q0, vL)),

which is maximized by setting b(q0, vL) = bL(vL) as long as bL(vL) > b̂(vL). Observe that

φ′L(b̂(vL))
fL(φL(b̂(vL)))

FL(φL(b̂(vL)))
(vL − b̂(vL)) + φ′S(b̂(vL))

fS(φS(b̂(vL)))

FS(φS(b̂(vL)))
(vL − b̂(vL)) > 1,

because the first term is one from the definition of b̂. This implies that bL(vL) > b̂(vL).
26It may have a downward jump at q0.
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We can similarly state that equilibrium bid behavior in the Vickrey auction corresponds to
equilibrium bid behavior in a second price auction with three bidders.

Lemma 3. The Vickrey auction has an equilibrium (in weakly dominant strategies) where each large
bidder bids bL(v) = v on all units and small bidders bid bS(v) = v.

We can use the connections between the DP and Vickrey auctions and their single-unit coun-
terparts to extend the implications of Corollary 2 to the multiple large bidder setting. In particular
Lebrun [1999] show that in the asymmetric first-price auction, the large bidder bids aggressively
relative to the small bidder if the small bidder is stronger in the sense that FS �rh FL. Thus, if
FS �rh FL, we have that the large bidder’s interim expected quantity won in the DP auction exceeds
her interim expected quantity in the Vickrey auction, because the Vickrey auction is efficient. The
standard envelope theorem argument then shows that the large bidder always has a higher interim
expected payoff in the DP auction versus the Vickrey auction if FS �rh FL. The same argument
shows that a large bidder has the reverse preference if FL �rh FS .

Corollary 4. If FS �rh FL, then a large bidder’s interim expected payoff in the DP auction is higher
than her interim expected payoff in Vickrey auction for any large bidder type vL ∈ [0, vL]. Similarly,
if FL �rh FS, then a large bidder’s interim expected payoff in the Vickrey auction is higher than her
interim expected payoff in DP auction for any large bidder type vL ∈ [0, vL].

A.2.2 Equilibrium in the UP auction and an Impossibility Result

Proposition 3 and Lemma 3 show that we can characterize equilibrium bid behavior in the DP and
Vickrey auctions when there are many large bidders. We characterize equilibrium bid behavior by
illustrating a connection between each auction and its single-unit counterpart. In this section, we
show that we are unable to tractably characterize equilibrium bid behavior in the UP auction in
the same way.

By tractable equilibria we are referring to equilibria for which the choice of clearing price remains
optimal for each large bidder after the opponents’ private information is revealed, which is equivalent
to saying that it is an ex post equilibrium in our model. If there is an ex post equilibrium of the
UP auction, then the large bidder’s bid curve maximizes her payoff pointwise, for any realization
of her rival’s type. As mentioned in Footnote 20, equilibria satisfying this property are the focus of
much of the literature on UP auctions and related market games.

To understand why these equilibria are tractable, and others are not, it is helpful to consider
a large bidder’s problem in this environment as being to choose the clearing price on a stochastic
residual supply curve that varies with her large rival’s type. Suppose there is an ex post equilibrium
of the UP auction and let b(v1, v2) be the clearing price the two large bidders have values v1 and
v2. If large bidder 2 submits a demand curve, q2(b, v2), when her type is v2, the residual supply
available to large bidder 1 for this realization of bidder 2’s type is FS(b) − q2(b, v2). Choosing the
clearing price is a simple optimization problem given v2, and we can consider doing this for all v2.
If the solution to this pointwise optimization problem gives admissible curves q1(b, v1) and q2(b, v2)
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such that the clearing price b(v1, v2) is optimal for each bidder and each realization of (v1, v2), then
we have found an ex post equilibrium.

More formally, consider solving a relaxed version of the problem stated below in (4) by optimizing
pointwise (i.e., for each v2) ignoring the constraint that the resulting schedule of price-quantity pairs
is admissible (i.e., q1(·, v1) is a nonincreasing function for each v1). We have written the problem
assuming that q2(b, ·) is nondecreasing for each b, which must be true in an ex post equilibrium (see
Footnote 28).27

max
b(v1,v2)

∫ v

0
(FS(b)− q2(b, v2))(v1 − b) dF (v2) (4)

s.t. v′2 > v2 =⇒ FS(b(v1, v
′
2))− q2(b(v1, v′2), v′2) ≤ FS(b(v1, v2))− q2(b(v1, v2), v2),

If a solution to this relaxed problem does not yield admissible demand curves (they could be upward
sloping or not functions at all), then in a Bayesian Nash equilibrium the constraint must bind
somewhere. While this observation is straightforward, knowing a priori where the constraint binds
endogenously in equilibrium appears to be a very difficult problem.

We consider a general class of equilibrium demand curves, and show that there cannot exist an
ex post equilibrium in this extension of our model. To generate a contradiction, we assume that
there is a symmetric ex post equilibrium of the UP auction. The symmetry assumption simplifies the
presentation of the proofs but is not essential to the argument that there is no ex post equilibrium.
A type-v large bidder submits the demand curve, q(b, v), which must be nonincreasing in b and
nondecreasing in v.28 Given that it is weakly dominated to demand any quantity at b > v, we
assume that q(b, v) = 0 for all b > v. The monotonicity of q(·, v) implies that q(·, v) is differentiable
almost everywhere [Royden, 1968]. We assume that if q(b, v) is not differentiable with respect to b
at b′, then the left-hand partial derivative, qb(b′−, v), exists. For the remainder of this section, the
term “equilibrium” refers to an equilibrium with these properties. The result we prove using two
lemmas below is the following.

Proposition 4. There does not exist a symmetric, ex post equilibrium demand curve for the large
bidders in the uniform-price auction.

We prove the above Propostion in two steps (Lemmas 4 and 5). To explain the intuition for the
proof, we introduce some additional notation. Given the assumption that bids are undominated,
when v2 = 0 bidder 1 competes only with the small bidders and chooses a clearing price, b̂(v1) ∈
arg maxb FS(b)(v1 − b). Note that this implies that q(b̂(v1), v1) = FS(b̂(v1)). Since bidder 2 is

27Note that the monotonicity of q2(b, ·) implies that in order to satisfy the constraint it also must be true that
v′2 > v2 =⇒ b(v1, v

′
2) ≥ b(v1, v2).

28It must be nonincreasing in b due to the rules of the auction, while it must be nondecreasing in v, due
to the ex post optimization problem satisfying a single-crossing property. Specifically, given v2 if b(v1, v2) ∈
argmaxb(v1,v2)(FS(b(v1, v2))− q(b(v1, v2), v2))(v1− b(v1, v2)), then due to the fact that the cross partial of the objec-
tive with respect to b and v1 is nonnegative b(·, v2) is nondecreasing for each v2 [Milgrom and Shannon, 1994]. The
fact that the residual supply curve is nondecreasing then implies that the quantity purchased by bidder 1, q(b, v1), is
nondecreasing in v1 for each v2.
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q = FS(b)− q(b, v2)

Figure 2: Illustration of Lemma 4

assumed to never bid above v2, in an ex post equilibrium bidder 1 must win FS(b̂(v1)) for all
v2 < b̂(v1). The price b̂(v1) plays a critical role in the first lemma.29

When v2 > 0, if bidder 1 chooses the clearing price b ≥ b̂(v2) he is awarded the quantity
S(b, v2) = FS(b) − q(b, v2),30 which we refer to as bidder 1’s residual supply. Our proof that there
is no such q(b, v) that forms an ex post equilibrium relies on two contradictory lemmas.

In the first, we argue that for small enough v2, if bidder 1’s residual supply curve has a kink
at b = v2 then an ex post equilibrium cannot exist. Figure 2 illustrates the intuition of the proof.
With a kink in the supply curve at FS(b̂(v1)), the associated marginal cost jumps at this point.
Equilibrium requires that the type-v1 bidder purchase the quantity FS(b̂(v1)) for all v2 < b̂(v1).
The jump in the marginal cost implies that there is a type v′1 for the large bidder with v′1 < v1

who optimally purchases the same quantity FS(b̂(v1)) when v2 = b̂(v1), but this creates a problem
for the existence of an ex post equilibrium because the type-v′1 bidder purchases a smaller quantity
FS(b̂(v′1)) at a lower price b̂(v′1) when v2 = 0. We therefore can’t find a downward sloping demand
for bidder 1 that leads to these two purchase decisions for the type-v′1 bidder. This implies that for
an ex post equilibrium to exist in this environment there cannot be a kink in the residual supply
curve.

In the second, we argue that bidder 1’s residual supply curve must have a kink at b = v2 in
any ex post equilibrium. In combination with the previous lemma, we conclude that an ex post
equilibrium is impossible. The idea behind the second lemma is to assume that there is no kink in
the residual supply curve at a relevant v2 (i.e., a value of v2 that is not too high). This requires
that qb(v2, v2) = 0, which implies that for a small enough bid below v2 the bidder purchases an
arbitrarily small quantity in equilibrium. We rule out that this can be optimal by showing that the
bidder would prefer to win a strictly positive amount in this case.

Lemma 4. If qb(v−, v) < 0 for some v < b̂(1), q(b, v) cannot be a large bidder’s demand curve in
an ex post equilibrium.

29Standard arguments establish that b̂(v) is increasing [Milgrom and Shannon, 1994]. Also, fS(b) > 0 for all
b < b̂(v1) (i.e., a single-crossing property holds) implies that ∂/∂b (FS(b)(v1 − b)) > 0 for all b < b̂(v1).

30When b ≤ b̂(v2), the previous paragraph implies that bidder 1 is not awarded any of the good.
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Proof. Given a v1, fix v2 = b̂(v1). The type-v1 bidder’s payoff, π(b, v1, v2), for a bid b is

π(b, v1, b̂(v1)) = (FS(b)− q(b, b̂(v1)))(v1 − b),

which must be maximized at b̂(v1) since it must be that q(b̂(v1), v1) = FS(b̂(v1)) in equilibrium (i.e.,
the type-v1 bidder purchases the quantity FS(b̂(v1)) when the clearing price is b̂(v1)). Note that the
optimality of b = b̂(v1) requires that the left-hand derivative of the payoff at b̂(v1) is nonnegative.
For all b < b̂(v1),

πb(b, v1, b̂(v1)) = fS(b)(v1 − b)− FS(b)− qb(b, b̂(v1))(v1 − b) + q(b, b̂(v1)) > 0,

because the first two terms correspond to the derivative with respect to b of the payoff when
v2 = 0, which is positive for b < b̂(v1),31 and the second two are nonnegative because q(b, v) is
nonincreasing in b. Observe that qb(b̂(v1)−, b̂(v1)) < 0 implies that πb(b−, v1, b̂(v1)) > 0 (i.e., the
left-hand derivative of π with respect to b is positive). This then implies that there is a type v′1 < v1

for whom b̂(v1) is the preferred clearing price when v2 = b̂(v1). But since b̂(v′1) < b̂(v1) and hence
FS(b̂(v′1)) < FS(b̂(v1)), the type-v′1 bidder would prefer a larger quantity at a larger price when
v2 = b̂(v1) compared to when v2 = 0. This cannot happen in an ex post equilibrium with downward
sloping demands.

For q(b, v) to describe ex post equilibrium strategies, we therefore require that qb(v−, v) = 0

for all v < b̂(1). However, the next lemma shows that in any ex post equilibrium we must have
qb(v−, v) < 0 which creates a contradiction.

Lemma 5. Let v1 = b̂(v2) for some v2. In any ex post equilibrium qb(v1−, v1) < 0.

Proof. For a contradiction, take (v1, v2) as in the statement of the lemma and assume that qb(v1−, v1) =

0. Note that we must have that the clearing price is b(v1, v2) = b̂(v2) and that q(b(v1, v2), v1) = 0.
Using the market clearing condition, the equilibrium payoff for bidder 1 when her type is v1 can be
written in two ways.

q(b(v1, v2), v1)(v1 − b(v1, v2)) = (FS(b(v1, v2))− q(b(v1, v2), v2))(v1 − b(v1, v2)) = 0

Since qb(v1−, v1) = 0, when bidder 1 has the type v1 + 2ε bidder 1’s equilibrium payoff for small
ε is approximately zero since

q(b(v1 + 2ε, v2), v1)(v1 + 2ε− b(v1 + 2ε, v2)) ≈

(q(b(v1, v2), v1) + qb(b(v1, v2)−, v1)bv1(v1, v2)2ε)(v1 + 2ε− b(v1, v2)− bv1(v1, v2)2ε) = 0,

because q(v1, v1) = 0 and qb(v1−, v1) = 0.32 In words, the bidder with value v1 + 2ε must buy an
arbitrarily small quantity in equilibrium if qb(v1−, v1) = 0; however, we show that this bidder would

31See Footnote 29.
32This conclusion might fail to hold if bv1(v1, v2) were not bounded. Implicitly differentiating the market clearing
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prefer to buy a strictly positive quantity. Consider the clearing price b(v1 + 2ε, v2) = v1 + ε. The
payoff is larger at this price because

(FS(v1 + ε)− q(v1 + ε, v2))(v1 + 2ε− v1 − ε) ≈

(FS(v1) + fS(v1)ε− q(v1, v2)− qb(v1−, v2)ε)(ε) =

(fS(v1)− qb(v1−, v2))ε2 > 0.

Note that at v1+ε, bidder 1 buys a nonzero quantity implying that if q(b, v) is an ex post equilibrium
strategy qb(v1−, v1) < 0, a contradiction.

A.3 Model Extension 2: Sufficiently Small Large Bidders

In this section we study a setting where there are two symmetric large bidders. We show that a
large bidder has a greater ex ante expected payoff in the DP auction than the UP auction if their
capacities µL are sufficiently small.

In keeping with our benchmark model from Section 2, we assume that there is one unit of a
divisible good. There are two large bidders that we call large bidders 1 and 2. Each large bidder
has capacity µL > 0 and we assume that large bidder values are i.i.d. draws of a random variable
with continuous distribution FL(vL) : [0, 1]→ [0, 1].

We assume that the measure of small bidders exceeds the supply of available units µS ≥ 1.
This assumption implies that total demand strictly exceeds total supply for any µL > 0. Or in
other words µS + 2µL > 1 ∀µL > 0. The continuum of small bidders distributed according to the
commonly known and continuously differentiable distribution FS(vS) : [0, 1]→ [0, 1]. We let fS be
the density of small bidder values. We assume that fS has full support over [0, 1] and that fS is
continuous.

We show that when large bidder capacity is sufficiently small, large bidders get a strictly greater
expected payoff in the DP auction versus the UP auction. More precisely, we show that an upper
bound on a large bidder’s expected payoff in the UP auction is below a lower bound on a large
bidder’s expected payoff in the DP auction. We obtain an upper bound on the large bidder’s payoff
in the UP auction by assuming that large bidders play an undominated strategy given that their
small rivals bid truthfully. Or more formally, we assume that large bidder bid strategies survive two
rounds of elimination of weakly dominated strategies. We first note that it is a weakly dominant
strategy for a small bidder to bid truthfully and it is a weakly dominated strategy for a large bidder
to over report her demand. In the second round of elimination, we show that it is always a best
response for a large bidder to not shade her bid when she has a relatively high value and her small
rivals bid truthfully. For a large bidder with a sufficiently high value, bid shading is never a best
reply if large bidder capacity is sufficiently small and small bidders bid truthfully. We get the upper
bound on a large bidder’s expected payoff by finding the maximal expected payoff of the large bidder

condition, one can show that it is bounded as long as qv1(b(v1, v2), v1) is, which clearly must be true in any ex post
equilibrium.
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given that her rivals’ strategies survive two rounds of iterative elimination. Thus, a large bidder’s
expected payoff in the undominated equilibrium of a UP auction is weakly lower than our upper
bound on large bidder payoffs.

We then get a lower bound on the large bidder’s expected payoff in any equilibrium of the DP
auction. We obtain this lower bound on bidder payoff in the DP auction by finding a lower bound
on the interim expected quantity won by a large bidder in the DP auction. We then use the envelope
theorem to get a lower bound on the large bidder payoff.

In both auctions, there is a competitive region where a small bidder wins with a probability in
the open interval (0, 1). We modify our notion of a competitive region to accommodate two large
bidders. If both large bidders place sufficiently low bids (presumably because they have low values),
then in both auctions all small bidders with values vS > v` win with positive probability where
v` := F−1S (µS−1µS

). If both large bidders place sufficiently high bids and each wins the amount that
is her capacity µL, then a small bidder wins a unit if and only if her value vS exceeds vh(µL) :

[0, 1] → [0, 1] where vh(µL) = F−1S (µS+2µL−1
µS

) values vS < vh. In addition, all small bidders with
values vS > vm(µL) where vm(µL) : [0, 1] → [0, 1] and vm(µL) = F−1S (µS+µL−1µS

) win whenever one
large bidder wins her full capacity and the other large bidder wins no units. Note that vm(µL) and
vh(µL) are continuous and strictly increasing in µL when µL is sufficiently small because we assume
that FS is continuous and strictly increasing in µL when µL > 0 is sufficiently small. In addition,
µL > 0 ⇐⇒ v` < vm(µL) ≤ vh(µL).

Example 6. Suppose that both large bidders and all small bidder values are uniformly distributed
over [0, 1]. In addition, suppose that the measure of small bidders µs = 2. In this case, if µL ≤ 1

2 ,
then

v` =
1

2
, vm(µL) =

1 + µL
2

, and vh(µL) =
1 + 2µL

2
.

These three values will be useful in helping us to form bounds on large bidder payoffs in the UP
and DP auctions.

A.3.1 Bid Behavior and Welfare Bounds in the UP Auction

We first consider the decision problem of the large bidder in the UP auction. We suppose that
small bidders bid their true value because truthful bidding is a weakly dominant strategy for small
bidders in the UP auction. We let bLi(q, v) : [0, 1]2 → R+ be a (pure) bid strategy for large bidder
i. We let BL be the set of all functions bLi(q, v) : [0, 1]2 → R+ that are nonincreasing in the first
argument. Thus, BL is the set of all pure bid strategies for a large bidder in the UP auction. In
addition, we let BRLi(vLi, bLj , µL) be the set of best replies for large bidder i given that (1) she has
value vLi ∈ [0, 1], (2) her large rival bids according to some bid strategy bLj , (3) small bidders bid
truthfully, and (4) each large bidder has capacity µL.

The following Lemma shows that for any ε > 0, if a large bidder i has value vLi ≥ vh(µL) + ε,
then in the UP auction a large bidder bids at least vh(µL) on a measure µL of units when her
capacity µL > 0 is sufficiently small. This is because bidding at least vh(µL) for all µL units is
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always best response, for any strategy used by the large bidder’s large rival. In addition, bidding
below vh(µL) is not always a best response to your large rival. Or in other words, the large bidder
has no incentive to engage in bid shading when her value v strictly exceeds the value of the highest
small bidder in the competitive region and large bidder capacity is sufficiently small.

Lemma 6. For any ε > 0, then there exists a δ > 0 such that for all µL ≤ δ and v ≥ vh + ε,

bLi(q, v) ∈ BRLi(v, bLj , µL) ∀bLj ∈ BL,

if and only if
bLi(q, v) ≥ vh ∀q < µL, i, j = 1, 2 where i 6= j.

Proof. First, we show that for any v > vh(µL), there is a sufficiently small µ∗L > 0 such that for all
µL ∈ (0, µ∗L) we have that

µL = arg max
q∈[0,µL]

q

(
v − F−1s

(
µs − 1 + q + qj

µs

))
∀qj ∈ [0, µL].

Or in other words, a large bidder i with value v best responds by submitting a bid that ensures
that she wins µL units if (1) she her value v strictly exceeds vh(µL) and (2) her large rival wins qj
units invariant of her bid. We prove this by showing that the derivative of the above expression
with respect to q is positive for all q ∈ [0, µL] when µL > 0 is sufficiently small. The derivative with
respect to q of the objective is(

v − F−1S

(
µS − 1 + q + qj

µS

))
− q

(
1

fS(F−1S (
µS−1+q+qj

µS
))

1

µS

)
. (5)

Note that
F−1S

(
µS − 1 + q + qj

µS

)
≤ F−1s

(
µS − 1 + 2µL

µS

)
= vh(µL), (6)

and

x := max
q∈[0,µL]

(
1

fS(F−1S (
µs−1+q+qj

µs
))

1

µS

)
≥

(
1

fS(F−1S (
µs−1+q+qj

µs
))

1

µS

)
, (7)

where x <∞ because fS is finite for all v ∈ [0, 1]. Thus, expressions (6) and (7) imply that we can
bound (5) by

(
v − F−1s

(
µs − 1 + q + qj

µs

))
− q

 1

f(F−1s

(
µs−1+q+qj

µs

)
)

1

µs

 ≥ (v − vh)− µLx ∀q ≤ µL.

Moreover, if v > vh, then when µL > 0 is sufficiently small

(v − vh)− µLx > 0.
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Thus µL = arg maxq∈[0,µL] q(v − F
−1
s ((µs − 1 + q + qj)/µs) ∀qj ∈ [0, µL].

Next, fix v > vh and suppose that µL is such that µL = arg maxq∈[0,µL] q(v−F
−1
s ((µs − 1 + q+

qj)/µs) ∀qj ∈ [0, µL]. We have already shown that this occurs if µL > 0 is sufficiently small. Then,
bidder wins µL units with certainty if she bids bLi(q, v) ≥ vh whenever v > vh + ε and q < µL.

Fix bidder j’s type vj . Suppose that bidder i deviates to another strategy where she wins q < µL

units when her rival is type vj . We show that bidder i gets a lower payoff from this deviation for
any strategy used by her large rival, bidder j. Thus, it follows that the deviation is not a best reply.

Suppose that bidder j wins q̃j ∈ [0, µL] units if bidder i bids bLi(q, v) ≥ vh whenever v > vh + ε

and q < µL. Moreover, bidder j wins q′j ∈ [0, µL] units when bidder i deviates. Since bidder i
wins fewer units by deviating, and hence lowers the price, then it must be the case that bidder j
wins weakly more units when bidder i deviates, q′j ≥ q̃j , because she must submit a nonincreasing
demand curve. The following chain of inequalities shows that bidder i’s deviation is unprofitable.

µL

(
v − F−1s

(
µs − 1 + µL + q̃j

µs

))
≥ q

(
v − F−1s

(
µs − 1 + q + q̃j

µs

))
≥ q

(
v − F−1s

(
µs − 1 + q + q′j

µs

))
The first expression is the payoff from the prescribed strategy, and the last expression is the payoff
from the deviation. The first inequality was shown to hold above when µL is sufficiently small. The
second follows from the facts that q̃j ≤ q′j and F−1s is increasing. Thus, there is no strategy that
gives a greater payoff than bidding bLi(q, v) ≥ vh when v > vh + ε and q < µL.

As a corollary to this lemma, we can place an upper bound on a large bidder’s expected payoff
given that both she and her large rival play a strategy that is not weakly dominated when her small
rivals bid truthfully.

Corollary 5. For any ε > 0, there exists a δ > 0 such that for all µL ≤ δ, the large bidder’s per
unit expected payoff is bounded above by

UUP (µL)

µL
=

∫ 1

v`

vfL(v)dv − (FL(vh(µL) + ε)− FL(v`))v`

− (1− FL(vh(µL) + ε)) {FL(vh(µL) + ε)vm(µL) + (1− FL(vh(µL) + ε)) vh(µL)} .

The upper bound follows from the following observations: (i) the large bidder wins at most µL
when her value exceeds v`; (ii) she pays at least v` when her value is between v` and vh(µL)+ ε; (iii)
she pays at least vm(µL) when her value is greater than vh(µL) + ε and the opposing large bidder
has a value less than vh(µL) + ε; and (iii) she pays at least vh(µL) when both large bidders’ values
exceed vh(µL) + ε.
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A.3.2 Bid Behavior and Welfare Bounds in the DP Auction

We can also get a lower bound on a large bidder’s payoff in an equilibrium of the DP auction. Let
qDS (vS , µL) : [0, 1]2 → [0, 1] be a small bidder’s interim win probability in an undominated pure
strategy equilibrium of the DP auction where large bidder capacity is µL.

Remark 2. In any pure strategy equilibrium of the DP auction where bidders play undominated
strategies qDS (·, µL) is continuous and increasing over the interval [v`, vh(µL)] for all µL > 0. In
addition, each small bidder has interim expected payoff of US(vS , µL) : [0, 1]2 → R+, where

US(vS , µL) =

∫ vS

0
qDS (x, µL)dx.

We can obtain a lower bound on a small bidder’s payoff in any undominated equilibrium of the
DP auction. In order to obtain the lower bound, we assume that both large bidder’s do not shade
their bids. We use the lower bound on the small bidders’ payoff to get an upper bound on the
highest bid placed by any small bidder in the auction.

Lemma 7. In any pure strategy equilibrium of the DP auction where bidders play undominated
strategies, for any µL ∈ [0, 1] qDS (v, µL) is bounded below by qD

S
(v, µL) where

qD
S

(v, µL) =



0 if v < v`

FL(v`)
2 if v ∈ (v`, vm(µL))

FL(v`)(2− FL(v`)) if v ∈ (vm(µL), vh(µL))

1 if v > vh(µL).

The proof of the lemma is intuitive. We get the lower bound on the small bidders win proba-
bility by assuming that the each large bidder does not shade her bid. Thus, in any undominated
equilibrium, the large bidder bids less aggressively, and a small bidder’s win probability exceeds the
lower bound constructed her.33

If a small bidder has type vS < v`, then she wins with zero probability with certainty, because
the quantity demand from her small rivals that have higher demand already exceeds the market
supply, even in the absence of large bidders. If a small bidder has type vS ∈ (v`, vm(µL)), then
in any undominated pure strategy equilibrium, a small bidder wins a unit if (but not only if) her
bid exceeds both of her large rivals’ values. In addition, we know that her bid weakly exceeds v`,
because a small bidder wins with positive probability if and only if her value exceeds v`. Thus, a
small bidder with type vS ∈ (v`, vm(µL)) wins if both large bidders have values below v`. Indeed, a
small bidder may win in equilibrium even if this condition does not hold, but we only need a lower
bound on this probability. Similarly, a small bidder with type vS ∈ (vm(µL), vh(µL)) wins if at least
one large bidder has value below v`. This is because a small bidder in this range wins a unit if her

33In other words, we are considering a lower bound on a small bidders interim win probability, assuming that the
large bidder is playing a minimax strategy that is within the set of undominated strategies.
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bid exceeds the bid of at least one large bidder. The small bidder places a bid weakly above v`.
Thus, a lower bound on the small bidder’s win probability is the probability that at least one large
bidder has a value below v`.

We use the lower bound on small bidder interim win probabilities to place an upper bound on
the highest bid submitted in the DP auction.

Lemma 8. If bS(v, µL) : [0, 1]2 → R+ is the pure bid strategy of small bidders in any undom-
inated pure strategy equilibrium of the DP auction where large bidders have capacity µL. Then
bS(vh(µL), µL) ≤ b(µL) where

b(µL) := vh(µL)−
∫ vh(µL)

0
qD
S

(x, µL)dx

= vh(µL)− (vm(µL)− v`)FL(v`)
2 − (vh(µL)− vm(µL))FL(v`)(2− FL(v`)).

A corollary to this lemma is that we can get a lower bound on the expected payoff of any large
bidder in the DP auction. We give large bidder i’s expected payoff if she bids b(µL) if and only if
her value exceeds vh(µL). Bidder i bids zero otherwise. This is not a best response, but we can
find bidder i’s per unit utility from this strategy, and her payoff is independent of her large rival’s
strategy, because we know that bidder i wins µL units if and only if her value is above vh(µL).

UDP (µL)

µL
=

∫ 1

vh(µL)
vfL(v)dv − b(µL)(1− FL(vh(µL))

A.3.3 Welfare Comparison

In this subsection we prove that the lower bound on a large bidder’s (ex ante) expected payoff in
the DP auction exceeds the upper bound on the large bidder’s expected payoff in the UP auction
when µL is sufficiently small.

Proposition 5. The lower bound on a large bidder’s expected payoff in the DP auction UDP (µL)

exceeds the upper bound on the large bidder’s expected payoff in the UP auction UUP (µL) when
µL > 0 is sufficiently small.

Proof. First note that

lim
µL→0+

UUP (µL)

µL
= lim

µL→0+

UDP (µL)

µL
=

∫ 1

v`

vfL(v) dv − (1− FL(v`))v`.

We prove the proposition by showing that

d

dµL

UDP (µL)

µL

∣∣∣∣
µL=0

>
d

dµL

UUP (µL)

µL

∣∣∣∣
µL=0

. (8)

With these two facts, a first-order Taylor approximation of UUP (µL)/µL and UDP (µL)/µL around
µL = 0 implies that the former is smaller than the latter when µL is sufficiently small.
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For the UP auction we calculate that

d

dµL

UUP (µL)

µL

∣∣∣∣
µL=0

= −(1− FL(v` + ε))
{

(1− FL(v` + ε))v′h(0) + FL(v` + ε)v′m(0)
}
.

For the DP auction,
d

dµL

UDP (µL)

µL

∣∣∣∣
µL=0

= −b′(0)(1− FL(v`)),

where

b
′
(0) = v′h(0)− v′m(0)FL(v`)

2 − (v′h(0)− v′m(0))FL(v`)(2− FL(v`))

= v′h(0)(1− FL(v`))
2 + v′m(0)2FL(v`)(1− FL(v`)).

Thus, we find that

d

dµL

UDP (µL)

µL

∣∣∣∣
µL=0

= −(1− FL(v`))
2 {(1− FL(v`))v

′
h(0) + 2FL(v`)v

′
m(0)

}
.

Hence, the inequality in (8) holds if and only if

− (1− FL(v`))
2 {(1− FL(v`))v

′
h(0) + 2FL(v`)v

′
m(0)

}
>

− (1− FL(v` + ε))
{

(1− FL(v` + ε))v′h(0) + FL(v` + ε)v′m(0)
}
.

Since the right-hand side is continuous in ε when ε ≥ 0, we have that the above expression holds
for a sufficiently small ε > 0 if and only if

(1− FL(v`))
{

(1− FL(v`))v
′
h(0) + 2FL(v`)v

′
m(0)

}
< (1− FL(v`))v

′
h(0) + FL(v`)v

′
m(0)

(1− 2FL(v`))v
′
m(0) < (1− FL(v`))v

′
h(0).

The last inequality holds because v′h(0) > v′m(0). Thus, the inequality in (8) holds proving the
proposition.

A.4 Model Extension 3: Informed Large Bidders

In the final extension, we consider a situation in which each large bidder knows the opposing large
bidder’s type. In this case, we show there exists equilibria of the DP and UP auctions in which the
large bidders use similar strategies. As with our results in the body of the paper, the fact that small
bidders shade in the DP auction — because they are not informed of the large bidders’ types —
implies that the large bidders prefer the DP auction. In this equilibrium the large bidders submit flat
bid curves. Suppose that the large bidder with the lower type (e.g., bidder 2 with type vL2 < vL1)
submits a flat bid curve for all units equal to her marginal value. The higher type large bidder then
faces a residual supply curve that is perfectly elastic for all units up to FS(vL2). A clearing price, p,
exceeding vL2 yields 1− (1−FS(p)) = FS(p) units. The best reply of bidder 1 is to purchase exactly
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FS(vL2) units if his type is not too high and FS(b̂U (vL1)) where b̂U (v) ∈ arg maxb FS(b)(v − b)

otherwise.34 More precisely, bidder 1’s best reply is to place the bid

bU (q, vL1, vL2) =


vL1 vL1 ≤ vL2
vL11{q ≤ FS(vL2)} vL1 > vL2 ≥ b̂U (vL1)

b̂U (vL1) vL1 > b̂U (vL1) > vL2.

(9)

where 1{·} is an indicator function (the first and third cases indicate flat bids for all units). This bid
specifies that the higher type of large bidder purchases the quantity FS(vL2) at a price vL2 or the
quantity FS(b̂U (vL1)) at price b̂U (vL1). It is important to note that this is not the only equilibrium
of the UP auction. This fact makes it difficult to draw strong conclusions about the UP auction
with informed large bidders. However, this equilibrium in the UP auction has a similar counterpart
in the DP auction. For the DP auction, suppose again that the bidder with the lower type submits
a flat bid for all units equal to her marginal value. The other large bidder again faces a residual
supply curve that is flat for some initial amount of units and upward sloping after that. The small
bidders shade their bids now though. The small bidders are not informed in this model and hence
do not know with certainty what the clearing price will be, so they may gain in expectation by
reducing their bid below their value. In a monotone pure strategy equilibrium let the inverse of
their bid function be φS(b) and define b̂D(v) ∈ arg maxb FS(φS(b))(v − b) to be the large bidder’s
optimal bid when the other large bidder is absent, and consider the strategy defined by

bD(q, vL1, vL2) =


vL1 vL1 ≤ vL2
vL11{q ≤ FS(φs(vL2))} vL1 > vL2 ≥ b̂D(vL1)

b̂D(vL1) vL1 > b̂D(vL1) > vL2,

(10)

which specifies that the higher type of large bidder either purchases FS(φS(vL2)) units at price vL2
or the quantity that would be awarded at the price b̂D(vL1).

Proposition 6. If two large bidders are informed of each other’s type, then it is an equilibrium of
the UP auction for small bidders to bid at their value and large bidder 1 (and symmetrically for
large bidder 2) to bid according to bU (q, vL1, vL2).

In a monotone pure-strategy equilibrium, let the inverse bid function used by the small bidders
in the DP auction be φS(b). Using weak dominance, φS(b) ≥ b for all equilibrium bids. The large
bidders’ best replies are given by bD(q, vL1, vL2).

The large bidders prefer the DP auction to the UP auction, when these are the equilibrium
strategies.

Proof. That small bidders do not bid above (and generally below) their values in the DP auction is
34To see this, note that the residual supply curve has a kink at the quantity FS(vL2) where the marginal cost has

an upward jump. Only after the bidder’s type is large enough does she begin purchasing more than FS(vL2). The
bidder is indifferent between purchasing FS(vL2) and increasing her bid when vL2 = b̂U (vL1).
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clear. The logic for the large bidder’s preference is analogous to that used in Proposition 1 because
for any realization of large bidder types the large bidder with the higher type faces a residual supply
curve that is weakly lower in the DP auction due to the small bidder shading. The large bidder
with the lower type is indifferent between the two auctions because they purchase no units.

To show that the equilibrium in the UP auction is not unique and that other equilibria generate
distinct results we briefly sketch the details of an alternative.

Example 7. Let FS(b) = b. Suppose large bidders have the types vL1 and vL2 and that each
demands a quantity qi by bidding the amount v for units q ≤ qi and zero afterwards. The following
“quantity demands” form an equilibrium.

qi(vLi, vLj) =


vLi
2 vLi ≥ 2vLj

2
3vLi −

1
3vLj 2vLj > vLi ≥

vLj
2

0 vLj > 2vLi

Notice in that in this example the large bidder with the lower type may have a strictly positive
payoff. That is the lower type large bidder weakly prefers this equilibrium. The large bidder with
the higher type has an ambiguous preference.

This equilibrium is reminiscent of the one described in Back and Zender [1993], in which bidders
submit demand curves with maximum bids followed by zero bids. The Back and Zender [1993]
equilibrium remains an equilibrium when bidders have private information, but the one in our
previous example does not in our environment. The essential reason is that the quantity that must
be demanded depends carefully on the type of the other large bidder.
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