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Abstract

We study the benchmark independent private value auction setting when bidders
have endogenously determined budgets. Before bidding, a bidder decides how much
money she will borrow. Bidders incur a cost to borrowing. We show that bidders are
indifferent between participating in a first-price, second-price and all-pay auction. The
all-pay auction gives higher revenue than the first-price auction, which gives higher rev-
enue than the second price auction. In addition, when the distribution of values satisfies
the monotone hazard rate condition, the revenue maximizing auction is implemented
by an all-pay auction with a suitably chosen reserve price.
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1 Introduction

The seminal papers on auction design assume that a bidder’s ability to pay for a good
exceeds her willingness to pay; preferences are quasilinear.1 Yet, in many well-studied auction
markets, this restriction does not hold - bidders face binding budget constraints. Authors have
argued that the presence of budgets limits the applicability of auction theory in real-world
settings.2 In response, a literature developed that analyzed how the presence of budgets
changes the auction design problem. For example, Che and Gale (1996, 1998) compare
standard auctions with budgets, and Laffont and Robert (1996), Che and Gale (2000), and
Pai and Vohra (2014) construct revenue-maximizing auctions when bidders have budgets.3

The above literature assumes that budgets are exogenously determined.4 In practice,
however, bidders can choose the amount of resources devoted towards bidding in the auction.
Bidding in the auction requires liquid resources, which can be obtained by borrowing or
diverting resources away from alternative profitable investments. Thus, even if a bidder does
not borrow from a bank, she still incurs an opportunity cost of funds. This raises the question:
what is the optimal selling mechanism when buyers endogenously make such liquidity choices?
This question is also important not only for the auctions literature, but also for the growing
literature in monetary economics that models liquidity choices for decentralized trade.5

In this paper, we study auction design with endogenously determined budgets. We con-
sider an auction for an indivisible good, where bidders have independent private values, and
endogenously determine their budgets after observing their private information. Borrowing
is costly, and a bidder incurs a cost of borrowing whether or not her bid wins.

We show that bidders are indifferent between competing in the first-price, second-price
and all-pay auctions. However, the auctions are not revenue-equivalent. The all-pay auction
has the highest expected revenue, and the second-price auction has the lowest expected
revenue. This is the same revenue ranking that we see in the exogenous budget case of Che
and Gale (1996), but the intuition is distinct. In Che and Gale (1996), the all-pay auction

1See Myerson (1981) and Riley and Samuelson (1981).
2See Rothkopf (2007).
3This paper studies the case of private values, as do the previously cited works. There is additional work

that studies bidding in auctions with budgets in interdependent value environments. For example, Fang and
Parreiras (2003) and Kotowski and Li (2011).

4Two exceptions are Burkett (2015a, 2015b), where budgets are endogenously determined in a principal-
agent relationship, and Rhodes-Kropf and Viswanathan (2005), who consider a variety of forms of endogenous
financing in a first-price auction for a risky asset.

5Our paper’s environment, in which agents choose their money holdings before engaging in trade, is
reminiscent of the models in Lagos and Wright (2005) and Rocheteau and Wright (2005). Lagos, Rocheteau
and Wright (2015) provide a recent survey. In this literature, the pricing mechanism is crucial for determining
real balances, output, and efficiency. Galenianos and Kircher (2008), also introduced auctions into monetary
models. However, this literature assumes that goods are sold by second-price auctions, without examining
whether it is optimal.
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yields higher revenues than first or second price because the budget constraint is less likely
to bind in the all-pay. In our model, the all-pay auction yields higher revenues because it
economizes on bidders’ borrowing costs.

On the design of revenue-maximizing auctions, we show that the optimal auction is im-
plemented by an all-pay auction with a suitably chosen reserve price.6 This differs from an
optimal auction with exogenous budgets: the latter would not necessarily sell the good to the
highest-value bidder.7 The reason for the difference is that, with exogenous budgets, high-
value bidders are unable to express high demand for the good. With endogenous budgets,
high-value bidders are able to reveal that they have a higher demand by borrowing more
money to place higher bids. While placing higher bids comes at a cost, the auctioneer can
minimize these costs by using an all-pay payment scheme.

2 Model

2.1 Environment

A seller has one unit of an indivisible good, which she has no value for. There are N � 2

risk-neutral potential bidders. A bidder’s preferences are described her valuation v 2 R+.
Bidder valuations are i.i.d. draw of a random variable with density f . We assume that f

has full support over [v, v] ⇢ R+. Thus, f has an associated distribution function F which is
continuous and strictly increasing over [v, v], with F (v) = 0 and F (v) = 1.

A bidder determines her budget after finding out her value, but before placing her bid
and observing competing bids. If a bidder borrows b, she must repay b + c(b), where c(b) is
continuous, differentiable, strictly increasing, and weakly convex.8

Therefore, if bidder i wins the good, pays p and borrows b, where b � p, her utility is

vi � p� c(b).

A bidder cannot place a bid that exceeds the amount of money that she has borrowed.

2.2 Mechanisms

By the revelation principle, we limit attention to direct revelation mechanisms. Given the
profile of reported types v = (v1, . . . , vN), the direct revelation mechanism states a bidder’s

6This requires that bidders have monotone virtual values, as in Myerson (1981).
7For example, in Laffont and Robert’s (1996) optimal auction, all bidders with values above some threshold

win with equal probability.
8When determining the optimal auction, we assume that c is linear.
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(ex-post) probability of winning Qi(v), (ex-post) expected transfer Ti(v), and borrowing
bi(vi). The amount a bidder borrows is independent of other bidders’ reported types, because
a bidder decides her budget before bidding. Since borrowing is costly, bidders do not borrow
more than they would need to pay in the auction; hence bi(v) = supv�i

Ti(v). Feasibility
requires

NX

i=1

Qi(v)  1.

Let qi(v) = Ev�i(Qi(v, v�i)) be bidder i’s interim probability of winning when reporting type
v. Similarly, ti(v) = Ev�i (Ti(v, v�i)) denotes the interim expected payment made by bidder
i. Therefore, the expected utility of bidder i, if her true type is vi and she reports type v, is

Ui(v, vi) = qi(v)vi � ti(v)� c(bi(v)).

The direct revelation mechanism is (interim) incentive-compatible if

Ui(vi, vi) � Ui(v, vi) 8v 2 [v, v], i = 1, . . . , N.

3 Standard Auctions

Incentive compatibility implies that qi(v) and ti(v) are weakly increasing. Thus, both func-
tions are differentiable almost everywhere along [v, v]. Pick any point where Ui(v, vi) is
differentiable with respect to v at vi. The necessary first order condition for incentive com-
patibility implies

@Ui(v, vi)

@v

= q

0
i(v)vi � t

0
i(v)� c

0
(bi(v))b

0
i(v) = 0.

Therefore, the total derivative of Ui(vi, vi) with respect to vi is

dUi(vi, vi)

dvi
= qi(vi).

Since Ui is differentiable almost everywhere, this implies

Ui(vi, vi) = Ui(v, v) +

ˆ vi

v

qi(s)ds. (1)

Thus, we can use standard Myersonian approach to characterize bidder i’s interim expected
utility. Equation (1) implies that bidder i is indifferent between any two mechanisms that give
the same interim probability of winning, and give the same expected utility to the low type.
In particular, bidders are indifferent between participating in the first-price, second-price,
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and all-pay auction.
We use equation (1) to establish a revenue ranking of the three standard auctions. We

consider symmetric Bayes Nash Equilibria.

Proposition 1. (Revenue ranking of standard auctions)

The all-pay auction has strictly greater expected revenue than the first price auction. The

first price auction has strictly greater expected revenue than the second price auction.

Proof. Since bids are strictly increasing in each auction, q(v) = F (v)

N�1 , and U(v, v) = 0.
Let �

f
(vi), �s

(vi), and �

a
(vi) be the symmetric equilibrium bid functions in the first price

auction, the second price auction, and the all-pay auction, respectively.
In each auction, a bidder never pays in excess of her bid. Thus, a bidder borrows exactly

the amount she bids: �

j
(vi) = b

j
(vi) for j = f, s, a.

First, we show that �

f
(vi) > �

a
(vi) 8vi 2 (v, v). Equation (1) implies that

F (vi)
N�1

�
vi � �

f
(vi)

�
� c(�

f
(vi)) = F (vi)

N�1
vi � �

a
(vi)� c(�

a
(vi)),

and therefore

F (vi)
N�1

�

f
(vi) + c(�

f
(vi)) = �

a
(vi) + c(�

a
(vi)).

Since F (vi)
N�1 2 (0, 1) 8vi 2 (v, v), it follows that �f

(vi) > �

a
(vi) 8vi 2 (v, v). But then,

c(�

f
(vi)) > c(�

a
(vi)), and so the above equality immediately implies �a

(vi) > F (vi)
N�1

�

f
(vi)

for all vi 2 (v, v). Thus, bidder i makes a greater expected payment in the all pay auction
versus the first price auction conditional on being type vi.

The proof that the first price has higher revenue than the second price is similar. In the
first price auction, a bidder’s utility when she is type vi is

F (vi)
N�1

�
vi � �

f
(vi)

�
� c(�

f
(vi)).

In the second price auction, a bidder’s utility when she is type vi is

F (vi)
N�1

✓
vi � E(max

j 6=i
�

s
(vj)|vi � max

j 6=i
vj)

◆
� c(�

s
(vi)).

Equation (1) implies that these utilities must be equal, and so

F (vi)
N�1

�

f
(vi) + c(�

f
(vi)) = F (vi)

N�1E(max

j 6=i
�

s
(vj)|vi � max

j 6=i
vj) + c(�

s
(vi)).
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Since �

s
(vi) > E(maxj 6=i �

s
(vj)|vi � maxj 6=i vj) 8vi > v, the above equality implies

�

s
(vi) > �

f
(vi) 8vi > v. This, in turn, implies c(�

s
(vi)) > c(�

f
(vi)), and so the above

equality immediately implies F (vi)
N�1

�

f
(vi) � F (vi)

N�1E(maxj 6=i �
s
(vj)|vi � maxj 6=i vj) for

all vi 2 (v, v). Thus, bidder i makes a higher expected payment conditional on winning in
the first price auction than in the second price auction. Since both auctions assign the good
to the bidder with the highest vi, this implies that the expected total payment made in the
first price auction exceeds the expected total payment made in the second price auction.

Although Proposition 1 mirrors results from Che and Gale (1996, 2006) with exogenous
budgets, the intuition is different. With exogenous budgets, Che and Gale argue that the
all-pay auction gives higher revenues because the budget constraint is less likely to bind in
an all-pay auction. In our setting, the all-pay auction gives greater revenues because bidders
incur lower bid preparation costs. Since the equilibrium bid distribution is higher in the
first-price or second-price auction, bidders spend more money to finance their bids. It may
seem that bidders should then prefer the all-pay auction to the first or second-price auctions.
However, equation (1) shows us that the gains in surplus generated by borrowing less are
competed away in the auction environment. Since the bidders borrow less money, yet get the
same surplus, it then must be the case that the extra surplus goes to the auctioneer.

4 Revenue maximizing auction

In this section, we assume that c(b) = rb: there is a fixed interest rate r > 0. We first show
that the optimal mechanism has an all-pay payment structure. For ease of notation, we write
Ui(v, v) as Ui(v).

Lemma 1. Consider any two incentive-compatible direct revelation mechanisms ↵, � where

U

↵
i (v) = U

�
i (v) and q

↵
i (v) = q

�
i (v) 8v. In addition, suppose that b

↵
i (v) = t

↵
i (v) 8v. Then,

t

↵
i (v) � t

�
i (v) 8v.

Proof. Let qi(v) = q

↵
i (v) = q

�
i (v). By equation (1) we have

qi(v)v � (1 + r)t

↵
i (v) =

ˆ v

v

qi(s)ds = qi(v)v � t

�
i (v)� rb

�
i (v),

and so

(1 + r)t

↵
i (v) = t

�
i (v) + rb

�
i (v).

From the restriction bi(v) > supv�i
T i(v), it follows that b

�
i (v) � t

�
i (v). This implies that

(1 + r)t

↵
i (v) = t

�
i (v) + rb

�
i (v) � (1 + r)t

�
i (v). Therefore t

↵
i (v) � t

�
i (v).
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Thus, when considering revenue-maximizing auctions, it suffices to consider only all-pay
mechanisms, i.e. mechanisms in which bi(v) = supv�i

T i(v) = ti(v) 8v. From equation (1),
we then get that for any incentive compatible allocation function qi, where U(v) = 0,

Ui(v) =

ˆ v

v

qi(s)ds = qi(v)v � (1 + r)ti(v).

Bidder i’s expected payment can therefore be written as a function of the allocation function,

ti(v) =
1

1 + r

✓
qi(v)v �

ˆ v

v

qi(s)ds

◆
.

Thus, expected revenue is

1

1 + r

NX

i=1

ˆ v

v

✓
qi(v)v �

ˆ v

v

qi(s)ds

◆
f(v)dv.

This is equivalent to the problem solved by Myerson (1981) and Riley and Samuelson (1981).
Using their results, we can rewrite the above expression in terms of virtual values. Let
�(v) = v � 1� F (v)/f(v) be the virtual value of a bidder with type v. Expected revenue is
then equal to

1

1 + r

NX

i=1

E (qi(v)�(v)) .

Maximizing pointwise subject to feasibility shows that, if �(v) is weakly increasing,

Qi(vi, v�i) =

8
<

:
1 if �(v) � 0 and vi > max v�i

0 if �(v) < 0 or max v�i > vi

.

Thus, if �(v) is weakly increasing, the optimal mechanism can be implemented by an all-pay
auction with a suitably chosen reserve price b.9 The reserve price makes a bidder with type
v

⇤, where �(v

⇤
) = 0, indifferent between bidding and not bidding. That is, b is such that

F (v

⇤
)

N�1
v

⇤ � (1 + r)b = 0.

We have thus established the following result:

Proposition 2. Suppose that �(v) is weakly increasing. The optimal mechanism can be

implemented by an all-pay auction with minimum bid b. The minimum bid b satisfies

9If F satisfies the monotone hazard rate condition, then � is weakly increasing in v.
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b =

F (v

⇤
)

N�1
v

⇤

1 + r

,

where v

⇤
is such that

v

⇤
=

1� F (v

⇤
)

f(v

⇤
)

.

The result differs from results on auctions with exogenous budgets, e.g., Laffont and
Robert (1996) and Pai and Vohra (2014). Both papers suggest using a mechanism with an
all-pay payment scheme, but a different winning rule. Specifically, they show that the bidder
with the highest valuation does not necessarily win the object with probability 1, even if all
bidders have the same budget. Here we show that, when we endogenize the budget constraint,
we get a different result, which looks closer to that of Myerson (1981). When bidders have
weakly increasing virtual values, the optimal mechanism is a standard all-pay auction with
a reserve price, which allocates the good to the highest-value bidder.
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