b. Show that X and Y are independent and have identical distributions (provide the marginal pdf they

$$
\begin{aligned}
& f_{x}^{\text {share }} . \\
& f_{y}(x)=\int_{0}^{4} \frac{x y}{64} d y=\left.\frac{x}{64}\left(\frac{1}{2} y^{2}\right)\right|_{0} ^{4}=\frac{x}{8}, 0 \leq x \leq 4 \\
& f_{0}^{4} \frac{x y}{64} d x=\left.\frac{y}{64}\left(\frac{1}{2} x^{2}\right)\right|_{0} ^{4}=\frac{y}{8}, 0 \leq y \leq 4
\end{aligned}
$$

c. The two counties want to hire a single company for the repairs. One particular company will only handle combined jobs of at most 6 miles at a time for a given week before charging huge additional fees. Using a probabilistic argument (ie. compute a meaningful probability), would you recommend the counties use this company for their repairs?

$$
\begin{aligned}
&=\left.\int_{2}^{4} \frac{x}{64}\left(\frac{1}{2} y^{2}\right)\right|_{6-x} ^{4} d x \\
&= \frac{1}{128} \int_{2}^{4} x\left(16-36+12 x^{4}-x^{2}\right) d x \\
&=\frac{1}{128}\left(-10 x^{2}+4 x^{3}-\frac{1}{4} x^{4}\right) \int_{2}^{4}\left(16-(6-x)^{2}\right) d x \\
&=\frac{1}{128}\left(-20 x+12 x^{2}-x^{3}\right) d x \\
&=\frac{1}{128}((-160+256-64)-(-40+32-4))
\end{aligned}
$$

