# Name: Detailed Solutions 

## Math 29 - Probability

Second Midterm Exam

Instructions:

1. Show all work. You may receive partial credit for partially completed problems.
2. You may use calculators and a one-sided sheet of reference notes. I have also provided various $z$-tables for your use. You may not use any other references or any texts.
3. You may not discuss the exam with anyone but me.
4. Suggestion: Read all questions before beginning and complete the ones you know best first. Point values per problem are displayed below if that helps you allocate your time among problems. Problems 1 and 2 are spread out over several pages so you have lots of space to work.
5. You need to demonstrate that you can solve all integrals that do not have a (DO NOT SOLVE) statement. I.E. Do the integrals by hand and write out some work showing how you solved the integration, including if necessary integration by parts.
6. Good luck!

| Problem | 1 | 2 | 3 | Total |
| :--- | :--- | :--- | :--- | :--- |
| Points Earned |  |  |  |  |
| Possible Points | 15 | 25 | 10 | 50 |

1. You may have heard that there are relationships between music and math. In this problem, we consider a very specific relationship between music and math. Suppose you are going to compose a music piece and you decide to construct it using a Markov Chain (you can actually build a music composition this way). For this example, you can only play three notes - A, C sharp, and E flat. The partial transition matrix is given at right (current state $=$ row, next state = column).

|  | A | C sharp | E flat |
| :--- | :--- | :--- | :--- |
| A | .1 | .6 | .3 |
| C sharp | .25 | .05 | .7 |
| E flat | .7 | .3 | 0 |

a. Complete the transition matrix so that it is a valid transition matrix for a Markov Chain. You will use the completed transition matrix for all parts below.
row sums must bel
b. Are there ny absorbing sets apart from the entire set $\{A, C$ sharp, $E$ flat $\}$ ? If yes, state them. Is this transition matrix reducible or irreducible?

There are no absorbing sets apart from $S$.
Hence the matrix is irreducible.
c. What is the probability $A$ is the note that is played 2 notes from now assuming you just played $E$ flat?

$$
\begin{array}{r}
P(A \text { in } 2 \text { notes } 1 \text { flat current }) \\
=P_{E A}^{.7} P_{A A}^{\prime 1}+P_{E C}^{13} P_{C A}+P_{R F E}^{O} P_{E A}^{.7} \\
=.07+.075=.145
\end{array}
$$

d. If you are equally likely to start with any note, what is the probability $A$ is the third note played? (I.E. you play an initial note, one more note, and then $A) \leftarrow$ ONLY 3 notes are played You can use $c$ to help here!

$$
\begin{aligned}
& \text { You can use } c \text { to hel } p \text { here! } \quad P(\text { stent } A) \\
& P\left(A \text { is } 3^{\text {rd }} \text { note played }\right)=\frac{1}{3}\left(\left.\begin{array}{c}
P \text { lay }
\end{array} \right\rvert\, \text { start } E b\right)+\frac{1}{3}(P \text { lay } A \mid \text { start } A)
\end{aligned}
$$

$$
\begin{aligned}
& \text { from } \left.c!\quad P(\overrightarrow{\text { stat }} \overrightarrow{E D}) \quad+\frac{1}{3} \text { (Play } A \mid \text { stat } C \#\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{3}\left(\dot{P}_{C A}^{25} P_{A A}^{.1}+{ }_{P}^{.05} \dot{P}_{C C}^{25}+\dot{P}_{C E}^{7} P_{E A}^{7}\right)=\frac{1}{3}(.145+.37+.527 . \\
& =\frac{1}{3}(1.0425) \\
& =.3475 \\
& \text { You could solve by getting the }
\end{aligned}
$$

2 step matrix, but only Io yrs did it that way.

1. continued.
e. In the long-run (assuming an equilibrium distribution exists) what fraction of notes will be $C$ sharps?
use the fact that one equation involves a 0 !

$$
\begin{aligned}
& \left.\pi=\pi P \quad \begin{array}{lll}
A & C \# E b \\
\pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right]=\left[\begin{array}{lll}
\pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right]\left[\begin{array}{ccc}
.1 & .6 & .3 \\
.25 & .05 & .7 \\
7 & 3 & 0
\end{array}\right] \begin{array}{l}
\text { row } \times \text { col }
\end{array} \\
& \text { Equates: } \\
& \pi_{1}=.1 \pi_{1}+.25 \pi_{2}+.7 \pi_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
1 & \pi_{1}=.1 \pi_{1}+.25 \pi_{2}+.7 \pi_{3} \\
2 & \pi_{2}=.6 \pi_{1}+.05 \pi_{2}+.3 \pi_{3} \\
3 & \pi_{3}=.3 \pi_{1}+.7 \pi_{2} \\
4 & \pi_{1}+\pi_{2}+\pi_{3}=1
\end{array}
$$

use 3 in $1 \Rightarrow$

$$
\begin{aligned}
& \pi_{1}=.1 \pi_{1}+.25 \pi_{2}+.7\left(.3 \pi_{1}+.7 \pi_{2}\right) \\
& .69 \pi_{1}=.74 \pi_{2} \\
& \pi_{1}=\frac{74}{69} \pi_{2} \\
&=1.072464 \pi_{2}
\end{aligned}
$$

$\Rightarrow \pi_{3}=1.021739 \pi_{2}$ plugging back in 3.
all inters of $\pi_{2}$

$$
\begin{array}{r}
1=(3.094203) \pi_{2} \\
\pi_{2}=.323185
\end{array}
$$

The fracten of notes that will be $C^{\# \prime}$ is $32.32 \%$.

Note: It didnlt ash for the enter equibibiurn distutatern. If you did row $x$ vow, you gat $1 / 3$ as the fraction.
2. Suppose $X$ and $Y$ are jointly distributed continuous random variables with joint pdf given by $y^{\prime 2}$
$f(x, y)=\lambda^{2} e^{-\lambda y}$, for $0 \leq x<y<\infty$, and where $\lambda>0$.
a. Sketch and shade the region where the joint pdf takes positive density on the graph paper at right.
b. Set up an integral or integrals (DO NOT SOLVE) to find $P(Y>2 X)$.

$$
\begin{aligned}
& \int_{0 x}^{\infty} \int_{2 x}^{\infty} e^{-\lambda y} d y d x \quad O R \\
& \int_{0}^{\infty} \int_{0}^{y / 2} \lambda^{2} e^{-\lambda y} d x d y
\end{aligned}
$$

shape c. Find $F(1,2)$. You will need to leave your answer in terms of $\lambda$.

$$
\begin{aligned}
& \square \quad \begin{array}{l}
\text { either takes } 2 \text { integrals if inner is } x
\end{array} \quad \text { or if inner is } y . \\
&= P(x \leq 1, y \leq 2)=\int_{0}^{1} \int_{x}^{2} \lambda^{2} e^{-\lambda y} d y d x \\
&\left.=\int_{0}^{1}-\lambda e^{-\lambda y}\right)_{x}^{2} d x=\int_{0}^{1}\left(\lambda e^{-\lambda x}-\lambda e^{-2 \lambda}\right) d x=\left.\left(-e^{-\lambda x}-x \lambda e^{-2 \lambda}\right)\right|_{0} ^{1} \\
&= 1-e^{-\lambda}-\lambda e^{-2 \lambda}
\end{aligned}
$$

Setup using $x$ on inside...
Ansis same

$$
\int_{0}^{1} \int_{0}^{y} \lambda^{2} e^{-\lambda y} d x d y+\int_{1}^{2} \int_{0}^{1} \lambda^{2} e^{-\lambda y} d x d y=1-e^{-\lambda}-\lambda e^{-2 \lambda}
$$

bottom triangle
square
d. Find the marginal distribution of $Y$.

Integrate $j+p d f$ ones all solves of $X$ ti get marginal $\delta y$.

$$
\begin{aligned}
f_{r}(y)=\int_{0}^{y} \lambda^{2} e^{-\lambda y} d x & =\left.x \lambda^{2} e^{-\lambda y}\right|_{0} ^{y} \\
& =\lambda^{2} y e^{-\lambda y}, 0<y<\infty
\end{aligned}
$$

Note: I did NOT grade the bounds, but this is what they are.
2. continued.
e. Use the marginal distribution of $Y$ to find the MGF of $Y$ (ie. solve as an expectation of a function of $Y$ )

$$
\begin{aligned}
& \text { when } \lambda=1 . \\
& \text { From } d, f_{Y}(y)=\lambda^{2} y e^{-\lambda y}, 0<y<\infty \Rightarrow y^{\lambda=1} \begin{array}{c}
e^{-y}, 0<y<\infty \\
0,0, w . \\
E\left(e^{t Y}\right)=\int_{0}^{\infty} e^{t y}\left(y e^{-y}\right) d y
\end{array} . \quad \begin{array}{l}
\text { this is a correct setup }
\end{array}
\end{aligned}
$$

Solving..

$$
\begin{aligned}
& =\int_{0}^{\infty} y e^{-y(1-t)} d y \quad \begin{array}{l}
\text { modified Gamma Fr! } \\
\alpha=2 \quad \beta=\frac{1}{1-t}
\end{array} \\
& =\Gamma(\alpha) \beta^{\alpha}=\Gamma(2)\left(\frac{1}{1-t}\right)^{2}=(1-t)^{-2}=M_{Y}(t)
\end{aligned}
$$

If you gut stack, pick somethry so you hare it to use.'
$Y \sim \operatorname{Gamma}(\alpha=2, \beta=1) b / c$ the mob in $e$, is a Gamma mao and mats are unique!
g. Give the general conditional distribution of $X$ given $Y$ for a general $\lambda$, and then use it to find

$$
f_{X \mid Y}=\frac{f(x, y)}{f_{Y}(y)}=\frac{\lambda^{2} e^{-\lambda y}}{\lambda^{2} y e^{-\lambda y}}=\frac{1}{y} \quad, 0 \leq x<y
$$

Again I didhic grade on the bounds.
(You can notice $X \mid Y$ is Uniform on $(0, y)$ ).

$$
P(x>.5 \mid y=2)=\int_{.5}^{2} \frac{1}{2} d x=\left..5 x\right|_{15} ^{2}=\frac{1}{2}\left(\frac{3}{2}\right)=3 / 4
$$

Sidenote: This particular jot dist is rev nicely behered. The marginal fr $X$ ends up hing a dist un e know also.
3. The number of particles emitted by a radioactive source is well-modeled by a Poisson ( 4 in $\mathbf{1}$ hour) distribution. $X \sim$ Poisson (Y)
a. What is the probability at most one particle is discharged from the source in a given hour?

$$
\begin{aligned}
& P(x \leq 1)=P(x=0)+P(x=1) \\
& =\frac{4^{0} e^{-4}}{0!}+\frac{4^{1} e^{-4}}{1!}=e^{-4}+4 e^{-4}=5 e^{-4} \approx .0916
\end{aligned}
$$

b. Now suppose there are 5 independent radioactive sources. What is the probability exactly 2 of these sources discharge at most one particle in a given hour?
$Y=\#$ discharge @mast $1 \quad Y \sim \operatorname{Bin}(5, .0916)$

$$
P(y=2)=\binom{5}{2}(.0916)^{2}(.9084)^{3} \approx .0629
$$

c. Now suppose there are 500 independent radioactive sources. What is the approximate probability that at most 55 of these sources discharge at most one particle during a given hour? You should make your approximation as accurate as you can. use Check to use approx. $Y \sim \operatorname{Bin}(500, .0916) \quad$ contmuity correction correction! $\quad n p=45.8$

$$
\begin{aligned}
& \text { So, } Y \text { is } \approx N(45.8,6.450172) \quad l \\
& P(Y \leq 55) \approx P(Y \leq 55.5)=P\left(Z \leq \frac{55.5-45.8}{6.450172}\right) \\
& =P(Z \leq 1.50)=.9332
\end{aligned}
$$

d. Give a formula for $E\left(X^{2}\right)$ when X is $\operatorname{Normal}(\mu, \sigma)$ in terms of the parameters of the distribution. This was just to remind you of the greek twiddle:

$$
V(x)=\sigma^{2}=E\left(x^{2}\right)-\mu^{2} \Rightarrow E\left(x^{2}\right)=\mu^{2}+\sigma^{2}
$$

