Problem Set 7 for Math 30

Date Due: April 6, 2011

March 29, 2011

Chapter 16 Problems (Sections 16.1-16.4): 7, 9, 13 and Additional problems below

Additional:

1. Suppose the proportion θ of defective items in a large manufactured lot is unknown.

a. Suppose the prior distribution on θ is a uniform distribution on (0,1). When eight items are selected at random from the lot, it is found that exactly 3 of them are defective. Determine the posterior distribution of θ .

b. Now suppose the prior distribution on θ is Beta(2,200). If 100 items are selected at random and three are found to be defective, what is the posterior distribution of θ ?

2. Suppose that the number of defects in a 1200 foot roll of magnetic recording tape has a Poisson distribution with mean θ , which is unknown.

a. Suppose the prior distribution on θ is a Gamma^{*} distribution (3,1). Suppose five rolls (1200 feet each) are selected at random and the numbers of defects found are: 2,2,6,0, and 3. What is the posterior distribution of θ ?

b. What is the Bayes estimate for θ ? (Give notation and numerical value for this scenario.)

3. Suppose that the time in minutes required to serve a customer at a certain facility has an exponential^{*} distribution with unknown parameter (θ). Suppose the prior distribution on θ is a Gamma^{*} distribution with mean 2 and standard deviation 1.

a. If X is Gamma^{*}(α , β), what is E(X)? What is V(X)?

b. What are the parameters of the Gamma^{*} distribution used here as the prior?

c. If the average time required to serve a random sample of 20 customers is found to be 3.8 minutes, what is the posterior distribution of θ ?

d. What is the Bayes estimate of θ ? (Give notation and numerical value for this scenario.)

4. Suppose we are sampling from a normal distribution with unknown mean μ and precision τ . Suppose we sample n=11 observations, and obtain a sample mean of 7.2 and $s_{11}^2 = \sum (x_i - \bar{x})^2 = 20.3$. Suppose we assume a normal-gamma^{*} prior for μ and τ with prior hyperparameters $\alpha_0 = 2$, $\beta_0 = 1, \mu_0 = 3.5$, and $\lambda_0 = 2$.

a. Find the posterior hyperparameters.

b. Find an interval that contains 95 percent of the posterior distribution of μ (i.e. a 95 percent CI for μ based on the posterior distribution).

c. Find an interval that contains 95 percent of the prior distribution of μ (i.e. a 95 percent CI for μ based on the prior distribution). Compare your intervals in b and c with a sentence or two.