Problem Set 7 for Math 30

Date Due: April 6, 2011

March 29, 2011

Chapter 16 Problems (Sections 16.1-16.4):
7, 9, 13 and Additional problems below

Additional:

1. Suppose the proportion θ of defective items in a large manufactured lot is unknown.
a. Suppose the prior distribution on θ is a uniform distribution on $(0,1)$. When eight items are selected at random from the lot, it is found that exactly 3 of them are defective. Determine the posterior distribution of θ.
b. Now suppose the prior distribution on θ is $\operatorname{Beta}(2,200)$. If 100 items are selected at random and three are found to be defective, what is the posterior distribution of θ ?
2. Suppose that the number of defects in a 1200 foot roll of magnetic recording tape has a Poisson distribution with mean θ, which is unknown.
a. Suppose the prior distribution on θ is a Gamma* distribution $(3,1)$. Suppose five rolls (1200 feet each) are selected at random and the numbers of defects found are: $2,2,6,0$, and 3 . What is the posterior distribution of θ ?
b. What is the Bayes estimate for θ ? (Give notation and numerical value for this scenario.)
3. Suppose that the time in minutes required to serve a customer at a certain facility has an exponential* distribution with unknown parameter (θ). Suppose the prior distribution on θ is a Gamma* distribution with mean 2 and standard deviation 1.
a. If X is $\operatorname{Gamma}^{*}(\alpha, \beta)$, what is $\mathrm{E}(\mathrm{X})$? What is $\mathrm{V}(\mathrm{X})$?
b. What are the parameters of the Gamma* distribution used here as the prior?
c. If the average time required to serve a random sample of 20 customers is found to be 3.8 minutes, what is the posterior distribution of θ ?
d. What is the Bayes estimate of θ ? (Give notation and numerical value for this scenario.)
4. Suppose we are sampling from a normal distribution with unknown mean μ and precision τ. Suppose we sample $\mathrm{n}=11$ observations, and obtain a sample mean of 7.2 and $s_{11}^{2}=\sum\left(x_{i}-\bar{x}\right)^{2}=$ 20.3. Suppose we assume a normal-gamma* prior for μ and τ with prior hyperparameters $\alpha_{0}=2$, $\beta_{0}=1, \mu_{0}=3.5$, and $\lambda_{0}=2$.
a. Find the posterior hyperparameters.
b. Find an interval that contains 95 percent of the posterior distribution of μ (i.e. a 95 percent CI for μ based on the posterior distribution).
c. Find an interval that contains 95 percent of the prior distribution of μ (i.e. a 95 percent CI for μ based on the prior distribution). Compare your intervals in b and c with a sentence or two.
