146 PROBABILITY

Moment Generating Functions

Let X be a simple random variable asssuming the distinct values x,..., X,
with respective probabilities py,..., p,. Its moment generating function is

!
(9-1) M(1) =E[e*]= ¥ pe’

i=1

(See (5.19) for expected values of functions of random variables.) This
function, defined for all real ¢, can be regarded as associated with X itself or
as associated with its distribution—that is, with the measure on the line
having mass p; at x; (see (5.12)).

If ¢ =max,|x,l, the partial sums of the series e'* =ZL7. ot ¥ X% /k! are
bounded by e"‘c and so the corollary to Theorem 5.4 applies:

(92) M(t) = i LX)

R

Thus M(¢) has a Taylor expansion, and as follows from the general theory
[A29], the coefficient of ¢t* must be M*)(0)/k! Thus

(9.3) E[X*] =M%(0).

Furthermore, term-by-term differentiation in (9.1) gives

MO(0) = ¥ poxkersm E[ XA
i=1

taking ¢ = 0 here gives (9.3) again. Thus the moments of X can be calculated
by successive differentiation, whence M(¢) gets its name. Note that M(0) = 1.

Example 9.1. 1f X assumes the values 1 and 0 with probabilities p and
=1—p, as in Bernoulli trials, its moment generating function is M(z) =
pe +q. The ﬁrst two moments are M'(0)=p and M"(0)=p, and the
variance is p — p =pq. |

If X,,..., X, are independent, then for each t (see the argument follow-
ing (5.10)), e"“’l ...,e'% are also independent. Let M and Ml,.. M, be the
respective moment generatmg functions of S=X;+ -+ +X, and of
Xy,..., X,; of course, e'S =T1,e'%. Since by (5.25) expected values multiply
for 1ndependent random varlables there results the fundamental relation

(9-4) M(t) =M(t) - M, (1).
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This is an effective way of calculating the moment generating function of
the sum S. The real interest, however, centers on the distribution of § , and
so it is important to know that distributions can in principle be recovered
from their moment generating functions.

Consider along with (9.1) another finite exponential sum N(t)= ¥ ;e
and suppose that M(¢) = N(¢) for all ¢. If X;,,=max x; and y; = max y,, then
M(t) ~p; e'*io and N(z) ~ g;,e'io as t — o, and so X, =Y, and p; =gq, . The
same argument now applies to ©; WP =L, joqje’yf, and it follows induc-
tively that with appropriate relabeling, x; =y, and p; = q; for each {. Thus
the function (9.1) does uniquely determine the x; and p,.

Example 9.2. If X,..., X, are independent, each assuming values 1 and
0 with probabilities p and g, then S=X,+ --- +X, is the number of
successes in n Bernoulli trials. By (9.4) and Example 9.1, § has the moment
generating function

The right-hand form shows this to be the moment generating function of a
distribution with mass (:)p"q""‘ at the integer k, 0 < k < n. The uniqueness

just established therefore yields the standard fact that P[S = k] = (:)pkq”"‘.
]

The cumulant generating function of X (or of its distribution) is
(9.5) C(t) =log M(t) =log E[e'].

(Note that M(¢) is strictly positive.) Since C'=M'/M and C" =(MM" —
(M')*)/M?, and since M(0) = 1,

(9.6) C(0)=0, C'(0)=E[X], C"(0)=Var[X].

Let m, = E[X*]. The leading term in (9.2) is m,=1, and so a formal
expansion of the logarithm in (9.5) gives

(9.7) c(ty= ¥ (—llv)——( Y %zk) .
r=1

Since M(t) — 1 as t — 0, this expression is valid for ¢ in some neighborhood
of 0. By the theory of series, the powers on the right can be expanded and




