

Figure 3.4 An example of a p.d.f.

Example 3.2.1 Demands for Utilities. In Example 3.1.5, we determined the distribution of the demand for water, X. From Fig. 3.2, we see that the smallest possible value of X is 4 and the largest is 200 . For each interval $C=\left(c_{0}, c_{1}\right) \subset[4,200]$, Eq. (3.1.1) says that

$$
\operatorname{Pr}\left(c_{0}<X \leq c_{1}\right)=\frac{149\left(c_{1}-c_{0}\right)}{29204}=\frac{c_{1}-c_{0}}{196}=\int_{c_{0}}^{c_{1}} \frac{1}{196} d x
$$

Here we see that X has the p.d.f.

$$
f(x)= \begin{cases}\frac{1}{196} & \text { if } 4 \leq x \leq 200 \\ 0 & \text { otherwise }\end{cases}
$$

A typical p.d.f. is sketched in Fig. 3.4. In that figure, the total area under the curve must be 1 , and the value of $\operatorname{Pr}(a<X<b)$ is equal to the area of the shaded region.

NOTE: Continuous Distributions Assign Probability 0 to Individual Values. The integral in Eq. (3.2.1) also equals $\operatorname{Pr}(a<X<b)$ as well as $\operatorname{Pr}(a \leq X \leq b)$ and $\operatorname{Pr}(a \leq$ $X<b)$. Hence, it follows from the definition of continuous distributions that, if X has a continuous distribution, $\operatorname{Pr}(X=a)=0$ for each number a. As we noted on page 17, the fact that $\operatorname{Pr}(X=a)=0$ does not imply that $X=a$ is impossible. If it did, all values of X would be impossible and X couldn't assume any value. What happens is that the probability in the distribution of X is spread so thinly that we can only see it on sets like intervals. It is much the same as the fact that lines have 0 area in two-dimensions, but that does not mean that lines are not there. The two vertical lines indicated under the curve in Fig. 3.4 have 0 area, and this signifies that $\operatorname{Pr}(X=a)=\operatorname{Pr}(X=b)=0$.

Nonuniqueness of the p.d.f.

If a random variable X has a continuous distribution, then $\operatorname{Pr}(X=x)=0$ for every individual value x. Because of this property, the values of each p.d.f. can be changed at

