Homework 4 Solutions

Assignment

Chapter 15: 2, 6, 20, 31, 43
Chapter 16: 9, 20, 47

Chapter 15

15.2] Travel. The given information:

Let $\mathrm{M}=$ event that a U.S. resident has traveled to Mexico
Let $\mathrm{C}=$ event that a U.S. resident has traveled to Canada

$$
P(\mathrm{M})=0.09 \quad P(\mathrm{C})=0.18 \quad P(\mathrm{M} \text { and } \mathrm{C})=0.04
$$

A Venn diagram is useful here.
(a) $P(\mathrm{C}$ but not M$)=0.14$. There's a 14% chance that a US resident has traveled to Canada but not Mexico.
(b) $P(\mathrm{C}$ or M$)=P(\mathrm{C})+P(\mathrm{M})-P(\mathrm{C}$ and M$)=0.18+0.09-0.04=0.23$.

Or, add the circular sections of the Venn diagram to get $0.05+0.04+0.14=0.23$. There's a 23% chance that a U.S. resident has traveled to Canada or Mexico.
(c) $\mathrm{P}($ neither C or M$)=1-\mathrm{P}(\mathrm{C}$ or M$)=1-0.23=0.77$

There's a 77% chance that a randomly selected resident has traveled to neither Canada nor Mexico.

15.6] Birth Order.

(a) P (Human Ecology) $=\frac{43}{223}=0.1928$. The probability that a student is in Human Ecology is 0.1928 .
(b) $P($ first-born $)=\frac{113}{223}=0.5067$. The probability that a student is a first born is 0.5067 .
(c) P (first-born and Ecology $)=\frac{15}{223}=0.0673$. The probability that a student is a firstborn and Ecology student is 0.0673 .

$$
\begin{aligned}
P(\text { first-born or Ecology }) & =P(\text { first-born })+P(\text { Ecology })-P(\text { first-born and Ecology }) \\
& =0.5067+0.1928-0.0673 \\
& =0.6322
\end{aligned}
$$

The probability that a student is a first-born or Ecology student is 0.6322 .
15.20] Benefits. A Venn diagram can help us here.

Let $\mathrm{R}=$ Retirement plan
Let $\mathrm{H}=$ Health Insurance
(a) $\mathrm{P}(\operatorname{not} \mathrm{R}$ and not H$)=0.25$

Using probability rules:

$P(\operatorname{not} \mathrm{R}$ and $\operatorname{not} \mathrm{H})=1-P(\mathrm{R}$ or H$)$

$$
\begin{aligned}
& =1-[P(R)+P(H)+P(\mathrm{R} \text { and } \mathrm{H})] \\
& =1-[0.56+0.68-0.49] \\
& =0.25
\end{aligned}
$$

There is a 25% probability that he has neither a retirement plan nor employer sponsored health insurance.
(b) $P(H \mid R)=\frac{P(H \text { and } \mathrm{R})}{P(R)}=\frac{0.49}{0.56}=0.875$. The probability of health insurance given he has a retirement plan is 0.875 .
(c) No, they are not independent, because

$$
\begin{gathered}
P(H \text { and } R) \stackrel{?}{\stackrel{\sim}{m}} P(H) P(R) \\
\text { ? } \\
0.49=0.68(0.56) \\
0.49 \neq 0.3808
\end{gathered}
$$

(d) They are not mutually exclusive, because there is some overlap between the two events. There are cases with both R and H .
15.31] Montana. Party affiliation is not independent of sex. To see this, let D represent Democrats, and M represent males.
Now $P(D)=\frac{84}{202}=0.4158$ and $P(D \mid M)=\frac{P(D \text { and } M)}{P(M)}=\frac{36}{105}=0.3429$
Since $P(D \mid M) \neq P(D)$, these events are not independent.
15.43] Dishwashers. A tree diagram can help us here.

$$
\begin{aligned}
P(\text { Chuck } \mid \text { Break }) & =\frac{P(\text { Chuck and Break })}{P(\text { Break })} \\
& =\frac{(0.3)(0.01)}{(0.4)(0.01)+(0.3)(0.01)+(0.3)(0.03)} \\
& =\frac{0.009}{0.004+0.003+0.009} \\
& =\frac{0.009}{0.016}=0.5625
\end{aligned}
$$

If we hear a dish break, there's a 56.25\% chance that Chuck is working.

Chapter 16

16.9] Software. The given information is:

Large Contract: $\$ 50,000$ profit
Small Contract: \$20,000 profit
Both Contracts: $\$ 70,000$ profit
30% chance
60% chance
$(0.30)(0.60)=18 \%$ chance
Let X be the profit. The distribution of X can be tabulated as

X	50,000	20,000	70,000	0
$P(X)$	0.12	0.42	0.18	0.28

$$
E[X]=\sum_{i=1}^{n} X_{i} P\left(X_{i}\right)=50000(0.12)+20000(0.42)+70000(0.18)+0(0.28)=\$ 27,000
$$

We'd expect an average profit of $\$ 27,000$.
16.20] Insurance. We have the following information:

Costs $\$ 100$
Major Injury: Pays $\$ 10,000$, Probability of $1 / 2000$
Minor Injury: Pays $\$ 3,000$, Probability of $1 / 500$
Let X be the profit.
(a) We can make a table for the probability model.

X	100	$-9,900$	-2900
$P(X)$	0.9975	0.0005	0.002

(b) The company's expected profit is $\$ 89$.

$$
E[X]=\sum_{i=1}^{n} X_{i} P\left(X_{i}\right)=100(0.9975)-9900(0.0005)-2900(0.002)=\$ 89 .
$$

(c) The standard deviation is $\$ 260.54$.

$$
\begin{aligned}
\sigma & =\sqrt{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} P\left(X_{i}\right)} \\
& =(100-89)^{2}(0.9975)+(-9900-89)^{2}(0.0005)+(-2900-89)^{2}(0.002) \\
& =\sqrt{120.6975+49890.0605+17868.242} \\
& =\sqrt{67879} \\
& =260.536
\end{aligned}
$$

16.47] Coffee and Doughnuts. This problem is not graded, as I haven't covered that material during our lecture.
a)

$$
\begin{aligned}
& \mu=E(\text { cups sold in } 6 \text { days })=6(E(\text { cups sold in } 1 \text { day }))=6(320)=1920 \text { cups } \\
& \sigma=S D(\text { cups sold in } 6 \text { days })=\sqrt{6(\operatorname{Var}(\text { cups sold in } 1 \text { day })}=\sqrt{6(20)^{2}} \approx 48.99 \mathrm{cups}
\end{aligned}
$$

The distribution of total coffee sales for 6 days has distribution $N(1920,48.99)$.

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z=\frac{2000-1920}{48.99} \\
& z=1.633
\end{aligned}
$$

According to the Normal model, the probability that he will sell more than 2000 cups of coffee in a week is approximately 0.051 .
b) Let $C=$ the number of cups of coffee sold. Let $D=$ the number of doughnuts sold.
$\mu=E(50 C+40 D)=0.50(E(C))+0.40(E(D))=0.50(320)+0.40(150)=\$ 220$
$\sigma=S D(0.50 C+0.40 D)=\sqrt{0.50^{2}(\operatorname{Var}(C))+0.40^{2}(\operatorname{Var}(D))}=\sqrt{0.50^{2}\left(20^{2}\right)+0.40^{2}\left(12^{2}\right)} \approx \$ 11.09$
The day's profit can be modeled by $N(220,11.09)$. A day's profit of $\$ 300$ is over 7 standard deviations above the mean. This is extremely unlikely. It would not be reasonable for the shop owner to expect the day's profit to exceed $\$ 300$.
c) Consider the difference $D-0.5 C$. When this difference is greater than zero, the number of doughnuts sold is greater than half the number of cups of coffee sold.

$$
\begin{aligned}
\mu & =E(D-0.5 C)=(E(D))-0.5(E(C))=150+0.5(320)=-\$ 10 \\
\sigma & =S D(D-0.5 C)=\sqrt{(\operatorname{Var}(D))+0.5(\operatorname{Var}(C))}=\sqrt{\left(12^{2}\right)+0.5^{2}\left(20^{2}\right)} \approx \$ 15.62
\end{aligned}
$$

The difference $D-0.5 C$ can be modeled by $N(-10,15.62)$.

According to the Normal model, the probability that the shop owner will sell a doughnut to more than half of the coffee customers is approximately 0.26 .

