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Abstract

This short example thesis meets all of the formatting requirements in Mathematics and

shows how to use the blackboard bold font Z,R,Q,C,N. Other fonts like calligraphic

K and fraktur m also appear, as do user-defined math operators like diamX and div ~F .

We also model a writing style appropriate to a math thesis, although a real thesis should

provide more exposition and justification than appears in, say, Chapter 3, which was taken

largely from a published math research paper. Throughout, the reader should look at both

the finished document and the raw LaTeX file to learn how to use LaTeX effectively. We

recommend that the aspiring math thesis writer also consult the document latextips.tex

for more examples of typeset mathematical equations, sectioning commands, and related

techniques.
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Chapter 1

Introduction

Let φ ∈ Q(z) be a rational function with rational coefficients. Let φn denote the nth iterate

of φ under composition; that is, φ0 is the identity function, and for n ≥ 1, φn = φ ◦ φn−1.

We will study the dynamics φ on the projective line P1(Q) = Q∪{∞}. In particular, we say

a point x is preperiodic under φ if there are integers n > m ≥ 0 such that φm(x) = φn(x).

The point y = φm(x) satisfies φn−m(y) = y and is said to be periodic (of period n −m).

Note that x ∈ P1(Q) is preperiodic if and only if its orbit {φn(x) : n ≥ 0} is finite.

Although φ can have infinitely many preperiodic points in C, the same is not true over

Q, as the following result [3] states.

Theorem 1.0.1 (Northcott, 1950). Let φ ∈ Q(z) be a rational function of degree d ≥ 2.

Then φ has only finitely many preperiodic points in P1(Q).

For example, let φ(z) = z2 − 29/16. Then the set {5/4,−1/4,−7/4} forms a periodic

cycle (of period 3), and −5/4, 1/4, 7/4, and ±3/4 each land on this cycle after one or

two iterations. In addition, the point ∞ is of course fixed. These nine rational points

are all preperiodic under φ. In fact, φ has only these nine rational preperiodic points [4,

Theorem 3].

Morton and Silverman proposed the following Conjecture [2].

Uniform Boundedness Conjecture. (Morton and Silverman, 1994)

Given an integer d ≥ 2, there is a constant κ = κ(d) such that no rational function φ ∈ Q(z)

of degree at least d has more than κ preperiodic points in P1(Q).
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In this thesis we will study the Uniform Boundedness Conjecture by analyzing filled

Julia sets Kv, to be introduced in Definition 3.1.2. In Chapter 2 we will set terminology

and discuss the geometry of subsets of certain fields. In Chapter 3 we will discuss some

topics related to dynamics and prove our main results.
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Chapter 2

Fundamentals

2.1 Absolute Values

Definition 2.1.1. Let K be a field. An absolute value v on K is a real-valued function

|·|v : K → [0,∞) such that for any x, y ∈ K, |x| = 0 if and only if x = 0, |xy|v = |x|v|y|v, and

|x+y|v ≤ |x|v+|y|v. If |·|v satisfies the stronger triangle inequality |x+y|v ≤ max{|x|v, |y|v},

then we say v is non-archimedean; otherwise we say v is archimedean.

Proposition 2.1.2. Let K be a field with absolute value v, and let x, y ∈ K. Then:

a. |1|v = 1,

b. |−x|v = |x|v,

c. |x− y|v ≤ |x|v + |y|v,

d. If v is non-archimedean and |x|v < |y|v, then |x+ y|v = |x− y|v = |y|v.

Proof. To prove part (a), note that |1|v = |1 · 1|v = |1|v|1|v = |1|2v, and hence either |1|v = 0

or |1|v = 1. However, since 1 6= 0 in the field K, we also have |1|v 6= 0, according to

Definition 2.1.1. Thus, |1|v = 1, as desired.

For part (b), we begin by noting that |−1|2v = |(−1)2|v = |1|v = 1, and therefore

either |−1|v = −1 or |−1|v = 1. However, |−1|v ∈ [0,∞), and hence |−1|v = 1. Thus,

|−x|v = |−1|v |x|v = |x|v. Part (c) is now immediate, since |x−y|v ≤ |x|v+|−y|v = |x|v+|y|v.

Finally, to prove part (d), we have

|y|v = |(x+ y)− x|v ≤ max{|x+ y|v, |−x|v} = max{|x+ y|v, |x|v} ≤ max{|x|v, |y|v} = |y|v,
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and therefore max{|x+ y|v, |x|v} = |y|v. However, |x|v < |y|v, implying that |x+ y|v = |y|v.

The proof that |x− y|v = |y|v is similar.

The usual absolute value on Q is of course archimedean; we will denote it by v =∞ or

| · |∞. Meanwhile, for any prime number p, the p-adic absolute value | · |p on Q is given by

|0|p = 0 and |pe · (r/s)|p = p−e for any integers e, r, s for which p does not divide r or s; it

is a non-archimedean absolute value. See [1, 5] for more on p-adic absolute values.

Given a field K with an absolute value v, one can form the completion Kv of K with

respect to v as the set of Cauchy sequences up to equivalence; Kv is a field, and v extends

to it in a natural way [5, Proposition I.3.2]. In addition, v extends uniquely to an algebraic

closure K̄v of Kv [5, Proposition II.3.3]. However, K̄v need not be complete.

Definition 2.1.3. Let K be a field with an absolute value v, and let K̄v be an algebraic

closure of Kv. We define Cv to be the completion of K̄v with respect to v.

Fortunately, Cv is both complete and algebraically closed [5, Theorem III.3.3]. If K = Q

and v =∞ is the usual absolute value, then Kv = R and K̄v = C is already complete, and

hence Cv = C. On the other hand, if K = Q and v = p is the p-adic absolute value, then

Kv = Qp is the field of p-adic rational numbers, and the algebraic closure Q̄p of Qp is not

complete [5, Corollary III.1.4]. Thus, its completion Cv = Cp is a strictly larger field.

2.2 Radii and Diameters in Cv

In this section, we fix a field Cv as in Definition 2.1.3. Given a point a ∈ Cv and a real

number r > 0, we define the open and closed disks of radius r centered at a to be

D(a, r) := {x ∈ Cv : |x− a|v < r} and D(a, r) := {x ∈ Cv : |x− a|v ≤ r},

respectively.

Remark 2.2.1. If v is non-archimedean, the closed unit disk D(0, 1) is often denoted ov.

It is a commutative ring with unity, since it is a subring of K; that is, it contains 1, is

closed under multiplication, and, thanks to the non-archimedean property, is closed under

addition and subtraction.
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Meanwhile, the open unit disk D(0, 1) is often denoted mv, and it is a maximal ideal of

ov. To see this, first note that mv is nonempty and closed under addition and subtraction,

again by the non-archimedean property. Second, given any a ∈ ov and b ∈ mv, we clearly

have |ab|v = |a|v|b|v < 1, and therefore ba = ab ∈ mv, proving that mv is an ideal. Finally,

if I ) mv is an ideal of ov properly containing mv, then there is some c ∈ I with |c|v = 1. It

follows that |c−1|v = 1, and hence c−1 ∈ ov. Therefore, for any a ∈ ov, because ac−1 ∈ ov,

we have a = (ac−1)c ∈ I. Thus, I = ov, proving that mv is in fact a maximal ideal.

Just as in R or C, the diameter of a set X ⊆ Cv is defined to be

diamX := sup{|x− y|v : x, y ∈ X}

if X 6= ∅, or 0 if X = ∅. If X is bounded, i.e., if there is some M > 0 such that |x|v ≤M

for all x ∈ X, then clearly X has finite diameter, since |x−y|v ≤ |x|v + |y|v ≤ 2M . However,

we will actually be interested in a different way to assign a size to X, as follows.

Definition 2.2.2. Let X ⊆ Cv. The radius of X, denoted radX, is the the infimum of the

radii of all closed disks containing X. That is,

radX := inf{r > 0 : X ⊆ D(a, r) for some a ∈ Cv}.

Note that if X is not a bounded set, then radX = inf ∅ =∞.

Proposition 2.2.3. Let X ⊆ Cv. Then

radX ≤ diamX ≤ 2 radX.

Proof. Let d = diamX and r = radX. If X = ∅, then r = 0 = d. Similarly, if X is

unbounded, then r = ∞ = d. Thus, it suffices to consider the case that there is some

a ∈ X, and that X ⊆ D(0,M) for some M ≥ 0. In particular, r and d are both finite.

To prove the first inequality, we simply observe that X ⊆ D(a, d), and therefore r ≤ d.

For the second inequality, given any ε > 0, there is some point b ∈ X and some real

number s ∈ (r, r + ε/2) such that X ⊆ D(b, s). Therefore, for any x, y ∈ X,

|x− y|v = |(x− b)− (y − b)|v ≤ |x− b|v + |y − b|v ≤ 2s < 2r + ε. (2.1)

Since (2.1) holds for all ε > 0 and all x, y ∈ X, we have d ≤ 2r.

5



Chapter 3

Dynamics

3.1 Filled Julia Sets

The following definition originally appeared in [2, p.98].

Definition 3.1.1. Let φ(z) ∈ Q(z) be a rational function with homogenous presentation

φ ([x, y]) = [f(x, y), g(x, y)],

where f, g ∈ Z[x, y] are relatively prime homogeneous polynomials of degree d = deg φ. We

say that φ has good reduction at a prime p if the reductions f̄ and ḡ modulo p have no

common zeros in Fp × Fp besides (x, y) = (0, 0).

Here, Fp = Z/pZ denotes the field with p elements. Naturally, given a homoge-

neous polynomial f(x, y) =
∑d

i=0 aix
iyd−i, the reduction f̄(x, y) in Definition 3.1.1 means∑d

i=0 āix
iyd−i.

Good reduction turns out to be closely related to the notion of filled Julia sets. The

motivating idea for such sets is that for a polynomial φ, all of the interesting dynamics

involves points that do not escape to ∞ under iteration.

Definition 3.1.2. Let Cv be a complete, algebraically closed field with absolute value | · |v,

and let φ(z) ∈ Cv[z] be a polynomial of degree d ≥ 2. The filled Julia set of φ at v is

Kv =
{
x ∈ Cv : {|φn(x)|v}n≥1 is bounded

}
.

6



Example 3.1.3. Fix a prime p, an integer d ≥ 2 with p - (d− 1), and c ∈ Cp with |c|p > 1.

Set r = |c|p and φ(z) = zd − cd−1z. Note that for any x ∈ Cp with |x|p > r, we have

|φ(x)|p = |x|dp, so that φn(x)→∞. That is, Kp ⊆ D(0, r); in particular, radKp ≤ r.

Lemma 3.1.4. Let p be a prime number, and let φ(z) = adz
d + ad−1z

d−1 + · · ·+ a0 ∈ Q[z]

be a polynomial of degree d ≥ 2. Denote by Kp the filled Julia set of φ in Cp, and set

r = |ad|
1/(d−1)
p radKp. If r > 1 and Kp ∩Q 6= ∅, then

r ≥

{
p if d = 2,
p1/[(d−1)(d−2)] if d ≥ 3.

Proof. Given b ∈ Kp ∩ Q, we may replace φ by φ(z + b) − b ∈ Q[z], which is a polynomial

of the same degree and lead coefficient as φ, but with filled Julia set translated by −b. In

particular, the radius r is preserved; thus, we may assume without loss that 0 ∈ Kp.

Choose α ∈ Cp such that αd−1 = ad, and let j be the largest index between 0 and d− 1

that maximizes λj := |α1−jaj |1/(d−j)
p .

Claim 3.1.5. λj > 1.

Proof of Claim 3.1.5. If λj ≤ 1, then |aiα
−i|p ≤ |α|−1

p = |adα
−d|p for every i = 0, . . . , d− 1.

Thus, for any x ∈ Cp with |x|p > |α|−1
p , we have |φ(x)|p = |adx

d|p. It follows by induction

that

|φn(x)|p = |ad|(d
n−1)/(d−1)

p |x|dn

p = |α|−1
p |αx|d

n

p →∞

as n → ∞, and hence x 6∈ Kp. Thus, as in Example 3.1.3, Kp ⊆ D(0, |α|−1
p ), contradicting

the hypothesis that r > 1.

By Theorem 6.5.7 of [1], which considers the so-called Newton polygon of φ, there is

some β ∈ Cp with φ(β) = 0 and |αβ|p = λj . We have 0, αβ ∈ Kp; hence, r ≥ λj .

If j = 0, then a simple induction shows that |αφn(0)|p = |αa0|d
n−1

p for n ≥ 1. However,

that contradicts the hypothesis that 0 ∈ Kp, since |αa0|p > 1.

Thus, 1 ≤ j ≤ d − 1. Writing |ad|p = pe1 and |aj |p = pe2 , where e1, e2 ∈ Z and e2 ≥ 1,

we have

r ≥ λj = |α1−jaj |1/(d−j)
p = pf > 1, wheref =

1
d− j

(
(1− j)
(d− 1)

e1 + e2

)
> 0.
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If j = 1, then f = e2/(d − 1) ≥ 1/(d − 1), which proves the Lemma for the case d = 2

and part of the case d ≥ 3. Finally, if 2 ≤ j ≤ d − 1, then because f > 0, we must have

e1 > (1 − d)e2. However, e1 and e2 are integers, and therefore e1 ≥ 1 + (d − 1)e2. Thus,

f ≥ 1/[(d− 1)(d− j)] ≥ 1/[(d− 1)(d− 2)].

Remark 3.1.6. The bounds of Lemma 3.1.4 are sharp. Indeed, one can check that they

are attained by φ(z) = z2 − z/p for d = 2 and by φ(z) = pdzd − pz2 for d ≥ 3.

3.2 Elementary Computations

We will write logd x to denote the logarithm of x to base d.

Definition 3.2.1. Let N ≥ 0 and d ≥ 2 be integers. We define E(N, d) to be twice the

sum of all base-d coefficients of all integers from 0 to N − 1. That is,

E(N, d) = 2
N−1∑
j=0

e(j, d), where e

(
M∑
i=0

cid
i, d

)
=

M∑
i=0

ci,

for ci ∈ {0, 1, . . . , d− 1}.

We will need the following Lemma.

Lemma 3.2.2. Let d ≥ 2 and N ≥ 1 be integers, and write N = c+ dk with 0 ≤ c ≤ d− 1

and k ≥ 0. Then:

a. E(N, d) = (d− c)E(k, d) + cE(k + 1, d) + (d− 1)N − c(d− c).

b. If N ≤ d, then E(N, d) = N(N − 1).

c. (d− c) logd

(dk
N

)
+ c logd

(dk + d

N

)
≤ 0.

d. If N ≥ d, then (d− 1) logd

(
dk + d

N

)
− (d− c) ≤ 0.
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Proof. Writing an arbitrary integer j ≥ 0 as j = i+ d` for 0 ≤ i ≤ d− 1, we compute

E(N, d) = 2
N−1∑
j=0

e(j, d) = 2
c−1∑
i=0

k∑
`=0

e(i+ d`, d) + 2
d−1∑
i=c

k−1∑
`=0

e(i+ d`, d)

= 2
c−1∑
i=0

k∑
`=0

(i+ e(`, d)) + 2
d−1∑
i=c

k−1∑
`=0

(i+ e(`, d))

=
c−1∑
i=0

[2(k + 1)i+ E(k + 1, d)] +
d−1∑
i=c

[2ki+ E(k, d)]

= cE(k + 1, d) + (d− c)E(k, d) + (k + 1)c(c− 1) + kd(d− 1)− kc(c− 1).

Part (a) now follows by rewriting the last three terms as

c(c− 1) + dk(d− 1) = c(c− d) + (c+ dk)(d− 1) = (d− 1)N − c(d− c).

For part (b), we simply observe that if 1 ≤ N ≤ d, then

E(N, d) = 2
(
1 + · · ·+ (N − 1)

)
= N(N − 1).

To prove part (c), note that the function logd(x) is of course concave down. Letting

x1 = dk/N and x2 = (dk+ d)/N , then, we have x1 ≤ 1 < x2, and therefore logd(1) ≥ L(1),

where

L(x) =
1

x2 − x1
[(x2 − x) logd(x1) + (x− x1) logd(x2)]

is the line through (x1, logd(x1)) and (x2, logd(x2)). That is,

0 ≥ 1
d

[
(d− c) logd

(
dk

N

)
+ c logd

(
dk + d

N

)]
.

For part (d), we have

(d− 1) logd

(
dk + d

N

)
=

(d− 1)
log d

· log
(

1 +
d− c
N

)
≤ (d− 1)

log d
· (d− c)

N
.

However, log d = − log[1− (d− 1)/d] ≥ (d− 1)/d, and since N ≥ d,

(d− 1) logd

(
dk + d

N

)
≤ (d− 1) · d

d− 1
· d− c
N

=
d

N
(d− c) ≤ (d− c).

Theorem 3.2.3. Let d ≥ 2 and N ≥ 1 be integers. Then E(N, d) ≤ (d− 1)N logdN , with

equality if N is a power of d.
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Proof. The result is immediate for N = 1 and N = d by Lemma 3.2.2.b. If 1 < N < d, then

because (log x)/(x− 1) is a decreasing function, we have (log d)/(d− 1) ≤ (logN)/(N − 1),

from which the desired inequality follows.

For N ≥ d+ 1, we proceed by induction on N , assuming the result holds for all positive

integers up to N − 1. Write N = c+ dk, where 0 ≤ c ≤ d− 1, so that 1 ≤ k ≤ N − 2. By

Lemma 3.2.2.a, we have

E(N, d) = (d− c)E(k, d) + cE(k + 1, d) + (d− 1)N − c(d− c)

≤ (d− c)(d− 1)k logd k + c(d− 1)(k + 1) logd(k + 1) + (d− 1)N − c(d− c)

= (d− c)(d− 1)k logd(dk) + c(d− 1)(k + 1) logd(dk + d)− c(d− c),

where the final equality is because N = (d − c)k + c(k + 1), and the inequality (which is

equality if N is a power of d) is by the inductive hypothesis, since k, k+ 1 ≤ N − 1. Adding

and subtracting (d− 1)N logdN , then,

E(N, d) ≤ (d− 1)N logdN + (d− c)(d− 1)k logd

(
dk

N

)
+ c(d− 1)(k + 1) logd

(
dk + d

N

)
− c(d− c)

= (d− 1)N logdN + c

[
(d− 1) logd

(
dk + d

N

)
− (d− c)

]
.

+ (d− 1)k
[
(d− c) logd

(
dk

N

)
+ c logd

(
dk + d

N

)]
The quantities in square brackets are nonpositive by Lemma 3.2.2.c–d, and the Theorem

follows.
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Corrections

When originally submitted, this honors thesis contained some errors which have been cor-

rected in the current version. Here is a list of the errors that were corrected.

Various places in the thesis. Approximately 20 spelling errors were corrected, 10 miss-

ing periods or commas were added in mathematical formulae, and approximately 30

spacing and sizing changes were made to mathematical formulae.

Other changes:

p. 1, l. 7. The length of the period of y was changed from n to n−m in two places.

p. 1, l. –6. The reference to [4, Theorem 3] was added.

p. 3. In the first paragraph of the Proof of Proposition 2.1.2, “and hence |1|v = 1” was

changed to “and hence either |1|v = 0 or. . . as desired.”

p. 4, l. 9. The phrase “is not complete” was changed to “need not be complete.”

p. 5, l. 4. The formula “ab ∈ mv” was changed to “ba = ab ∈ mv”.

p. 5, l. 6. Two appearances of “thus” were changed to “hence” and “Therefore”.

p. 5, l. 10. The clause “if X 6= ∅, or 0 if X = ∅” was added.

p. 5. The sentence “Note that if X . . .” was added after Definition 2.2.2.

p. 5. The four sentences, “If X = ∅, then. . . are both finite” were added to the first

paragraph of the Proof of Proposition 2.2.3.

p. 7, l. 1–3. The subscript v was changed to to p in four places.
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p. 7. The clauses “let r′ = radKp, and set r = |ad|
1/(d−1)
p r′” were changed to “set r =

|ad|
1/(d−1)
p radKp.”

p. 7, l. 13. The exponent 1/d− j was changed to 1/(d− j).

p. 8, l. 8. The sentence, “We will write logd x . . .” was added.

p. 9, l. 2–4. On each of these three lines,
d−1∑

i=c−1

was changed to to
d−1∑
i=c

.

p. 9, l. –4. In the first inequality of this line, ≤ was changed to to ≥.

p. 10, l. –2. The word “negative” was changed to to “nonpositive”.
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